

系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 119-131.doi: 10.12305/j.issn.1001-506X.2026.01.12
张彬1(
), 许高添2(
), 张廷豪3,*(
), 李志辉2(
), 何宏强2(
)
收稿日期:2025-03-06
接受日期:2025-06-10
出版日期:2026-01-25
发布日期:2026-02-11
通讯作者:
张廷豪
E-mail:13681482043@163.com;xgt1996@qq.com;zhangtinghao@xidian.edu.cn;lzh1qd594@163.com;hhq0209@163.com
作者简介:张 彬(1981—),男,研究员,硕士,主要研究方向为雷达总体设计及信号处理基金资助:
Bin ZHANG1(
), Gaotian XU2(
), Tinghao ZHANG3,*(
), Zhihui LI2(
), Hongqiang HE2(
)
Received:2025-03-06
Accepted:2025-06-10
Online:2026-01-25
Published:2026-02-11
Contact:
Tinghao ZHANG
E-mail:13681482043@163.com;xgt1996@qq.com;zhangtinghao@xidian.edu.cn;lzh1qd594@163.com;hhq0209@163.com
摘要:
针对一发多收前视成像,传统算法涉及的椭圆坐标系难以保持波数矢量正交分解,加剧了波数谱形状和范围的不规则性,降低了多平台图像融合性能和运动误差估计精度。为此,设计一种多中心极坐标系,保证一发多收前视构型下波数矢量的正交分解,保持波数谱形状和范围的规则性。结合快速后向投影算法中的频谱递归融合策略,重新设计频谱处理函数来精确和快速融合多平台图像。仿真结果表明,在满足频谱无混叠条件时,所提方法相较于传统方法所需的图像采样率更低,图像融合效率更高。在理想采样条件下,所提算法的图像融合精度相比传统方法更高。仿真实验验证该算法在提升成像质量和融合效率方面的有效性,为分布式合成孔径雷达前视高分辨成像提供一种有效的解决方案。
中图分类号:
张彬, 许高添, 张廷豪, 李志辉, 何宏强. 分布式合成孔径雷达前视高分辨成像算法[J]. 系统工程与电子技术, 2026, 48(1): 119-131.
Bin ZHANG, Gaotian XU, Tinghao ZHANG, Zhihui LI, Hongqiang HE. Forward-looking high resolution imaging algorithm for distributed synthetic aperture radar[J]. Systems Engineering and Electronics, 2026, 48(1): 119-131.
| 1 | REN H, SUN Z C, YANG J Y, et al. Swarm UAV SAR for 3-D imaging: system analysis and sensing matrix design[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5238316. |
| 2 | DING J S, ZHANG K W, HUANG X J, et al. High frame-rate imaging using swarm of UAV-borne radars[J]. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62, 5204912. |
| 3 | 张邦楚, 廖剑, 匡宇, 等. 美国无人机集群作战的研究现状与发展趋势[J]. 航空兵器, 2020, 27 (6): 7- 12. |
| ZHANG B C, LIAO J, KUANG Y, et al. Research status and development trend of the united states UAV swarm battlefield[J]. Aero Weaponry, 2020, 27 (6): 7- 12. | |
| 4 | 李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11 (6): 943- 973. |
| LI Y C, WANG J D, ZHANG T H, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11 (6): 943- 973. | |
| 5 | 樊晨阳, 贺思三, 郭乾. 雷达前视成像技术的研究现状[J]. 电光与控制, 2021, 28 (9): 59- 64. |
| FAN C Y, HE S S, GU Q. Research status of radar forward-looking imaging technology[J]. Electronics Optics & Control, 2021, 28 (9): 59- 64. | |
| 6 | SANTI F, ANTONIOU M, PASTINA D. Point spread function analysis for GNSS-based multistatic SAR. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 304–308. |
| 7 | RENGA A, GIGANTINO A, GRAZIANO M D. Multiplatform image synthesis for distributed synthetic aperture radar in long baseline bistatic configurations. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59(6): 9267−9284. |
| 8 | 王鑫硕, 卢景月, 孟智超, 等. 前视多通道SAR成像及阵列姿态误差补偿[J]. 雷达学报, 2023, 12 (6): 1155- 1165. |
| WANG X S, LU J Y, MENG Z C, et al. Forward-looking multi-channel synthetic aperture radar imaging and array attitude error compensation[J]. Journal of Radars, 2023, 12 (6): 1155- 1165. | |
| 9 | 庞礴, 代大海, 邢世其, 等. 前视SAR成像技术的发展和展望[J]. 系统工程与电子技术, 2013, 35 (11): 2283- 2290. |
| PANG B, DAI D H, XING S Q, et al. Development and perspective of forward-looking sar imaging technique[J]. Systems Engineering and Electronics, 2013, 35 (11): 2283- 2290. | |
| 10 | 方智豪. 群多基SAR序接成像方法研究[D]. 成都: 电子科技大学, 2023. |
| FANG Z H. A study of swarm multibasic SAR sequential joining imaging methods[D]. Chengdu: University of Electronic Science and Technology of China, 2023. | |
| 11 | LI W C, CHEN R, YANG J Y, et al. A hybrid real/synthetic aperture scheme for multichannel radar forward-looking superresolution imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1- 5. |
| 12 | YANG Y, CHENG Y Q, LIU K, et al. Radar forward-looking imaging based on chirp beam scanning[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22, 3500905. |
| 13 |
CHEN Z Y, TANG S Y, REN Y, et al. Curvilinear flight synthetic aperture radar (CF-SAR): principles, methods, applications, challenges and trends[J]. Remote Sensing, 2022, 14 (13): 2983.
doi: 10.3390/rs14132983 |
| 14 | GEZIMATI M, SINGH G. Curved synthetic aperture radar for near-field terahertz imaging[J]. IEEE Photonics Journal, 2023, 15 (3): 1- 13. |
| 15 | SONG X, LI Y C, ZHANG T H, et al. Focusing high-maneuverability bistatic forward-looking SAR using extended azimuth nonlinear chirp scaling algorithm. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60: 1−14. |
| 16 | ZHANG T H, LI Y C, WANG J D, et al. A modified range model and extended omega-K algorithm for high speed-high-squint SAR with curved trajectory[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 1- 15. |
| 17 | 陈溅来, 熊毅, 徐刚, 等. 基于子图像变标的非线性轨迹SAR成像及其自聚焦方法[J]. 雷达学报, 2022, 11 (6): 1098- 1109. |
| CHEN J L, XIONG Y, XU G, et al. Nonlinear trajectory synthetic aperture radar imaging and autofocus algorithm based on sub-image nonlinear chirp scaling[J]. Journal of Radars, 2022, 11 (6): 1098- 1109. | |
| 18 | 邢孟道, 马鹏辉, 楼屹杉, 等. 合成孔径雷达快速后向投影算法综述[J]. 雷达学报, 2024, 13 (1): 1- 22. |
| XING M D, MA P H, LOU Y S, et al. Review of fast back projection algorithms in synthetic aperture radar[J]. Journal of Radars, 2024, 13 (1): 1- 22. | |
| 19 |
AN H Y, WU J J, HE Z W, et al. Geosynchronous spaceborne–airborne multichannel bistatic SAR imaging using weighted fast factorized back projection method[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (10): 1590- 1594.
doi: 10.1109/LGRS.2019.2902036 |
| 20 |
ZHANG X B, YANG P X. Back projection algorithm for multi-receiver synthetic aperture sonar based on two interpolators[J]. Journal of Marine Science and Engineering, 2022, 10 (6): 718.
doi: 10.3390/jmse10060718 |
| 21 | ZHENG Z Y, TAN G W, JIANG D Y. A Bi-directional resampling imaging algorithm for high maneuvering bistatic forward-looking SAR based on Chebyshev orthogonal decomposition[J]. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62, 52115128. |
| 22 |
CAO Y, GUO S C, JIANG S, et al. Parallel optimisation and implementation of a real-time back projection (BP) algorithm for SAR based on FPGA[J]. Sensors, 2022, 22 (6): 2292.
doi: 10.3390/s22062292 |
| 23 | XIE H T, AN D X, HUANG X T, et al. Fast time-domain imaging in elliptical polar coordinate for general bistatic VHF/UHF ultra-wideband SAR with arbitrary motion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8 (2): 879- 895. |
| 24 | CHEN X X, SUN G C, XING M D, et al. Ground Cartesian back-projection algorithm for high squint diving TOPS SAR imaging[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 59 (7): 5812- 5827. |
| 25 | CHEN Q, LIU W K, SUN G C, et al. A fast cartesian back-projection algorithm based on ground surface grid for GEO SAR focusing[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5217114. |
| 26 | LI Y C, XU G T, ZHOU S, et al. A novel CFFBP algorithm with non-interpolation image merging for bistatic forward-looking SAR focusing[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5225916. |
| 27 | 闫莉, 许高添, 张廷豪. 基于改进混合坐标系的大斜视俯冲机动平台SAR快速时域成像算法[J]. 电子学报, 2024, 52 (10): 3472- 3481. |
| YAN L, XU G T, ZHANG T H. A fast time-domain imaging algorithm for high-squint diving maneuvering platform SAR based on modified hybrid coordinate system[J]. Acta Electronica Sinica, 2024, 52 (10): 3472- 3481. | |
| 28 |
FENG D, AN D X, HUANG X T. An extended fast factorized back projection algorithm for missile-borne bistatic forward-looking SAR imaging[J]. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (6): 2724- 2734.
doi: 10.1109/TAES.2018.2828238 |
| 29 |
ZHOU S, YANG L, ZHAO L F, et al. A new fast factorized back projection algorithm for bistatic forward-looking SAR imaging based on orthogonal elliptical polar coordinate[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (5): 1508- 1520.
doi: 10.1109/JSTARS.2019.2907138 |
| 30 |
HU X, XIE H T, ZHANG L, et al. Fast factorized back projection algorithm in orthogonal elliptical coordinate system for ocean scenes imaging using geosynchronous spaceborne–airborne VHF UWB bistatic SAR[J]. Remote Sensing, 2023, 15 (8): 2215.
doi: 10.3390/rs15082215 |
| [1] | 李璇, 仲健豪, 何姿, 樊振宏, 丁大志. 基于交替方向乘子法的雷达目标多频段多视角融合高分辨成像算法[J]. 系统工程与电子技术, 2026, 48(1): 87-93. |
| [2] | 杨宽, 许小剑. 基于参数外推的超宽带雷达有源极化校准技术[J]. 系统工程与电子技术, 2025, 47(8): 2498-2510. |
| [3] | 李春雨, 辛虎兵, 宋艳琴. 一种航天发射任务分布式多站实时航迹处理方法[J]. 系统工程与电子技术, 2025, 47(7): 2185-2193. |
| [4] | 刘宁, 李芳芳, 李新武, 洪文. 结合足迹和相位信息的SAR高层建筑三维重建[J]. 系统工程与电子技术, 2025, 47(5): 1469-1486. |
| [5] | 孟祥天, 经哲涵, 曹丙霞, 沙明辉, 朱应申, 闫锋刚. 多维参数谱重构的FDA-MIMO雷达超分辨目标定位方法[J]. 系统工程与电子技术, 2025, 47(5): 1461-1468. |
| [6] | 张军, 许京伟, 王柯祎, 廖桂生, 李军, 蔡兴雨. 相干FDA雷达收发联合多波束方法[J]. 系统工程与电子技术, 2025, 47(5): 1487-1494. |
| [7] | 王慧赋, 潘海波, 罗佳, 陶诗飞. 基于注意力图剪枝的辐射源信号识别方法[J]. 系统工程与电子技术, 2025, 47(4): 1067-1073. |
| [8] | 林娟, 朱希娟, 刘兴润, 李浩彤, 吴开峰, 董雁冰. 爆炸型红外烟幕衰减特性模型的实验验证研究[J]. 系统工程与电子技术, 2025, 47(3): 720-729. |
| [9] | 王奇, 王子瑶, 郑峻峰. 考虑多源噪声及信号传输的雷达系统仿真模型[J]. 系统工程与电子技术, 2025, 47(3): 768-778. |
| [10] | 贾钰嘉, 张思乾, 唐涛, 匡纲要. 强化散射特征的机载SAR实传图像盲超分辨重建[J]. 系统工程与电子技术, 2025, 47(3): 753-767. |
| [11] | 贾蕾蕾, 刘利民, 董健. 基于图像结构信息的可见光和SAR图像快速配准[J]. 系统工程与电子技术, 2025, 47(2): 428-441. |
| [12] | 孟洋, 周国如, 李洁, 张冰尘. 基于结构化字典学习的判别稀疏微波成像方法[J]. 系统工程与电子技术, 2025, 47(1): 94-100. |
| [13] | 肖凯, 肖国尧, 孙宗正, 王铎鹏, 全英汇. 小型化宽带侦察干扰一体化系统的设计与验证[J]. 系统工程与电子技术, 2025, 47(1): 22-33. |
| [14] | 蒋李兵, 杨庆伟, 郑舒予, 王壮. 基于拍卖理论的组网雷达多轨道目标ISAR成像资源分配算法[J]. 系统工程与电子技术, 2025, 47(1): 81-93. |
| [15] | 嵇志康, 周子楠, 李煊鹏. 面向雷达信号分选的自约束搜索密度聚类算法[J]. 系统工程与电子技术, 2025, 47(1): 62-69. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||