| 1 |
ZHANG H, XIN B, DOU L H, et al. A review of cooperative path planning of an unmanned aerial vehicle group[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21 (12): 1671- 1694.
|
| 2 |
杨旭, 王锐, 张涛. 面向无人机集群路径规划的智能优化算法综述[J]. 控制理论与应用, 2020, 37(11): 2291−2302.
|
|
YANG X, WANG R, ZHANG T. Review of unmanned aerial vehicle swarm path planning based on intelligent optimization[J]. Control Theory & Applications, 2020, 37(11): 2291−2302.
|
| 3 |
张堃, 华帅, 袁斌林, 等. 基于Multi-Agent的无人机集群体系自主作战系统设计[J]. 系统工程与电子技术, 2024, 46 (4): 1273- 1286.
|
|
ZHANG K, HUA S, YUAN B L, et al. Design of autonomous combat system of unmanned cluster system based on multi-agent[J]. Systems Engineering and Electronics, 2024, 46 (4): 1273- 1286.
|
| 4 |
LING H F, LUO L C, CHEN H S, et al. Modelling and simulation of distributed UAV swarm cooperative planning and perception[J]. International Journal of Aerospace Engineering, 2021, 2021 (2)
|
| 5 |
赵超轮, 戴邵武, 赵国荣, 等. 基于分布式模型预测控制的无人机编队控制[J]. 控制与决策, 2022, 37 (7): 1763- 1771.
|
|
ZHAO C L, DAI S W, ZHAO G R, et al. Formation control of multi-UAV based on distributed model predictive control algorithm[J]. Control and Decision, 2022, 37 (7): 1763- 1771.
|
| 6 |
, et al. Adaptive path following control for miniature unmanned aerial vehicle confined to three-dimensional Dubins path: from take-off to landing[J]. ISA Transactions, 2023, 143, 156- 167.
doi: 10.1016/j.isatra.2023.09.021
|
| 7 |
伍友利, 叶圣涛, 方洋旺, 等. 固定翼无人机群的集群和避障控制[J]. 国防科技大学学报, 2019, 41(5): 103−110.
|
|
WU Y L, YE S T, FANG Y W, et al. Flocking and obstacles avoidance for fixed-wing unmanned aerial vehicle swarm[J]. Journal of National University of Defense Technology, 2019, 41(5): 103−110.
|
| 8 |
, et al. Path planning for UAVs formation reconfiguration based on Dubins trajectory[J]. Journal of Central South University, 2018, 25 (11): 2664- 2676.
doi: 10.1007/s11771-018-3944-z
|
| 9 |
YANG J, XI J X, WANG C, et al. Multi-base multi-UAV cooperative patrol route planning novel method[C]//Proc. of the 33rd Youth Academic Annual Conference of Chinese Association of Automation, 2018.
|
| 10 |
H L. Sampling-based tour generation of arbitrarily oriented Dubins sensor platforms[J]. Journal of Aerospace Information Systems, 2019, 16 (5): 168- 186.
doi: 10.2514/1.I010683
|
| 11 |
ZHANG B, DUAN H B. Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment[J]. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2015, 14 (1): 97- 107.
|
| 12 |
GE F W, LI K, HAN Y, et al. Path planning of UAV for oilfield inspections in a three-dimensional dynamic environment with moving obstacles based on an improved pigeon-inspired optimization algorithm[J]. Applied Intelligence, 2020, 50, 2800- 2817.
doi: 10.1007/s10489-020-01650-2
|
| 13 |
吴健发, 王宏伦, 王延祥, 等. 无人机反应式扰动流体路径规划[J]. 自动化学报, 2023, 49(2): 272−287.
|
|
WU J F, WANG H L, WANG Y X, et al. UAV reactive interfered fluid path planning[J]. Acta Automatica Sinica, 2023, 49(2): 272−287.
|
| 14 |
ZHANG D F, DUAN H B. Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning[J]. Neurocomputing, 2018, 313, 229- 246.
doi: 10.1016/j.neucom.2018.06.032
|
| 15 |
, et al. Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach[J]. Chinese Journal of Aeronautics, 2019, 32 (6): 1504- 1519.
doi: 10.1016/j.cja.2019.03.026
|
| 16 |
SHAO Z, YAN F, ZHOU Z, et al. Path planning for multi-UAV formation rendezvous based on distributed cooperative particle swarm optimization[J]. Applied Sciences, 2019, 9 (13): 2621.
doi: 10.3390/app9132621
|
| 17 |
YAN S Q, LIU W D, YANG P, et al. Optimization of UAV cooperative path planning mathematical model based on personalized multigroup sparrow search algorithm in complex environment[J]. Journal of Function Spaces, 2022. DOI: https://doi.org/10.1155/2022/2521737.
|
| 18 |
周维, 过学迅, 裴晓飞, 等. 基于RRT与MPC的智能车辆路径规划与跟踪控制研究[J]. 汽车工程, 2020, 42 (9): 1151- 1158.
|
|
, et al. Study on path planning and tracking control for intelligent vehicle based on RRT and MPC[J]. Automotive Engineering, 2020, 42 (9): 1151- 1158.
|
| 19 |
余伶俐, 魏亚东, 霍淑欣. 基于MCPDDPG的智能车辆路径规划方法及应用[J]. 控制与决策, 2021, 36 (4): 835- 846.
|
|
S X. The method and application of intelligent vehicle path planning based on MCPDDPG[J]. Control and Decision, 2021, 36 (4): 835- 846.
|
| 20 |
李相民, 薄宁, 代进进. 基于模型预测控制的多无人机避碰航迹规划研究[J]. 西北工业大学学报, 2017, 35 (3): 513- 522.
doi: 10.3969/j.issn.1000-2758.2017.03.024
|
|
J J. Study on collision avoidance path planning for multi-UAVs based on model predictive control[J]. Journal of Northwestern Polytechnical University, 2017, 35 (3): 513- 522.
doi: 10.3969/j.issn.1000-2758.2017.03.024
|
| 21 |
LUIS C E, VUKOSAVLJEV M, SCHOELLIG A P. Online trajectory generation with distributed model predictive control for multi-robot motion planning[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 604- 611.
doi: 10.1109/LRA.2020.2964159
|
| 22 |
SORIA E, SCHIANO F, FLOREANO D. Distributed predictive drone swarms in cluttered environments[J]. IEEE Robotics and Automation Letters, 2021, 7 (1): 73- 80.
|
| 23 |
, et al. Multi-UAV trajectory planning during cooperative tracking based on a fusion algorithm integrating MPC and standoff[J]. Drones, 2023, 7 (3): 196.
doi: 10.3390/drones7030196
|
| 24 |
宋超, 李波, 马云红, 等. 基于优化 A* 和 MPC 融合算法的三维无人机航迹规划[J]. 系统工程与电子技术, 2023, 45(12): 3995−4004.
|
|
SONG C, LI B, MA Y H. 3D UAV trajectory planning based on optimized A* and MPC fusion algorithm[J]. Systems Engineering and Electronics, 2023, 45(12): 3995−4004.
|
| 25 |
STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11, 341- 359.
doi: 10.1023/A:1008202821328
|
| 26 |
PAN Z H, ZHANG C X, XIA Y Q, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Trans. on Circuits and Systems II: Express Briefs, 2021, 69 (3): 1129- 1133.
|
| 27 |
, et al. Model predictive path tracking control for automated road vehicles: a review[J]. Annual Reviews in Control, 2023, 55, 194- 236.
doi: 10.1016/j.arcontrol.2022.11.001
|
| 28 |
MAYNE D. An apologia for stabilising terminal conditions in model predictive control[J]. International Journal of Control, 2013, 86 (11): 2090- 2095.
doi: 10.1080/00207179.2013.813647
|
| 29 |
ZHANG L, ZHANG Y J, LI Y F. Path planning for indoor mobile robot based on deep learning[J]. Optik, 2020, 219, 165096.
doi: 10.1016/j.ijleo.2020.165096
|
| 30 |
JOSE M M, RUDY R N. Distributed model predictive control made easy[M]. Netherlands: Springer, 2014.
|
| 31 |
OWEN M, BEARD R W, MCLAIN T W. Implementing dubins airplane paths on fixed-wing UAVs*[M]. Dordrecht: Springer, 2015.
|
| 32 |
MORELLI E A. Global nonlinear parametric modelling with application to F-16 aerodynamics[C]//Proc. of the American Control Conference, 1998.
|
| 33 |
STEVENS B L, LEWIS F L, JOHNSON E N. Aircraft control and simulation: dynamics, controls design, and autonomous systems[M]. New Jersey: John Wiley & Sons, 2015.
|