1 |
RAN L , LIU Z , LI T , et al. Extension of map-drift algorithm for highly squinted SAR autofocus[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10 (9): 4032- 4044.
|
2 |
ZHAO L , XIE T , PERRIE W , et al. Detection of sea surface temperature fronts from SAR images[J]. Journal of Atmospheric and Oceanic Technology, 2022, 39 (12): 1919- 1926.
doi: 10.1175/JTECH-D-22-0009.1
|
3 |
SINGH G , VENKATARAMAN G , YAMAGUCHI Y , et al. Capability assessment of fully polarimetric ALOS PALSAR data for discriminating wet snow from other scattering types in mountainous regions[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (2): 1177- 1196.
doi: 10.1109/TGRS.2013.2248369
|
4 |
CAO C J , CUI Z Y , WANG L Y , et al. Cost-sensitive awareness-based SAR automatic target recognition for imbalanced data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5205316.
|
5 |
曲长文, 何友, 龚沈光. 机载SAR发展概况[J]. 现代雷达, 2002, 24 (1): 1-10, 14.
|
|
QU C W , HE Y , GONG S G . Overview of airborne SAR deve-lopment[J]. Modern Radar, 2002, 24 (1): 1-10, 14.
|
6 |
张玉玲, 王鹏, 曲长文. 微型SAR发展状况[J]. 舰船电子对抗, 2008, 31 (5): 51- 55.
|
|
ZHANG Y L , WANG P , QU C W . Development situation of miniature SAR[J]. Shipboard Electronic Countermeasure, 2008, 31 (5): 51- 55.
|
7 |
PARKER J A , KENYON R V , TROXEL D E . Comparison of interpolating methods for image resampling[J]. IEEE Trans.on Medical Imaging, 1983, 2 (1): 31- 39.
doi: 10.1109/TMI.1983.4307610
|
8 |
SHEPPARD D G , PANCHAPAKESAN K , BILGIN A , et al. Lapped nonlinear interpolative vector quantizatoin and image super-resolution[J]. IEEE Trans.on Image Processing, 2000, 9 (2): 295- 298.
doi: 10.1109/83.821746
|
9 |
MICHAEL E , ARIE F . Super-resolution reconstruction of image sequences[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1999, 21 (9): 817- 834.
doi: 10.1109/34.790425
|
10 |
SCHULTZ R R, STEVENSON R L. Improved definition video frame enhancement[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1995: 2169-2172.
|
11 |
FREEMAN W T , JONES T R , PASZTOR E C . Example-based super-resolution[J]. IEEE Computer Graphics & Applications, 2002, 22 (2): 56- 65.
|
12 |
YANG J C , WRIGHT J , HUANG T S , et al. Image super-resolution via sparse representation[J]. IEEE Trans.on Image Processing, 2010, 19 (11): 2861- 2873.
|
13 |
XIAO G Y, ZHANG L. SAR image super-resolution reconstruction based on full-resolution discrimination[C]//Proc. of the IEEE International Conference on Image Processing, 2022: 691-695.
|
14 |
MOUSA A , BADRAN Y , SALAMA G , et al. Regression layer-based convolution neural network for synthetic aperture radar images: denoising and super-resolution[J]. The Visual Computer, 2023, 39 (4): 1295- 1306.
|
15 |
闵锐, 杨学志, 董张玉, 等. 结构增强型生成对抗网络SAR图像超分辨率重建[J]. 地理与地理信息科学, 2021, 37 (2): 47- 53.
|
|
MIN R , YANG X Z , DONG Z Y , et al. Structure enhanced generative adversarial network SAR image super-resolution reconstruction[J]. Geography and Geo-Information Science, 2021, 37 (2): 47- 53.
|
16 |
SHEN H F , LIN L P , LI J , et al. A residual convolutional neural network for polarimetric SAR image super-resolution[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2020, 161, 90- 108.
|
17 |
WU Z R , ZHAO Z Y , MA P F , et al. Real-world DEM super-resolution based on generative adversarial networks for improving InSAR topographic phase simulation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8373- 8385.
|
18 |
WU W F , HUANG X , SHAO Z F , et al. SAR-DRDNet: a SAR image despeckling network with detail recovery[J]. Neurocomputing, 2022, 493, 253- 267.
|
19 |
LIU S Q , LEI Y , ZHANG L Y , et al. MRDDANet: a multiscale residual dense dual attention network for SAR image denoising[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5214213.
|
20 |
ZHANG K, LIANG J Y, VAN G L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 4771-4780.
|
21 |
WANG X T, XIE L B, DONG C, et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data[C]//Proc. of the IEEE/CVF International Conference on Computer Vision Workshops, 2021: 1905-1914.
|
22 |
SHOCKER A, COHEN N, IRANI M. Zero-shot super-resolution using deep internal learning[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3118-3126.
|
23 |
CHANG T W, CHIU W C, HUANG C C. Find the way back: invertible kernel estimator for blind image super-resolution[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2022: 2145-2149.
|
24 |
LIU A R , LIU Y H , GU J J , et al. Blind image super-resolution: a survey and beyond[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2023, 45 (5): 5461- 5480.
|
25 |
YUAN Y, LIU S Y, ZHANG J W, et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018.
|
26 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M. Gene-rative adversarial nets[C]//Proc. of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
|
27 |
易拓源, 户盼鹤, 刘振. 基于改进CycleGAN的ISAR图像超分辨方法[J]. 信号处理, 2023, 39 (2): 323- 334.
|
|
YI T Y , HU P H , LIU Z . ISAR images super-resolution method based on ameliorated CycleGAN[J]. Journal of Signal Processing, 2023, 39 (2): 323- 334.
|
28 |
ZHU J Y, PARK T, ISO-LA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2017.
|
29 |
AO D Y , DUMITRU C O , SCHWARZ G , et al. Dialectical GAN for SAR image translation: from Sentinel-1 to TerraSAR-X[J]. Remote Sensing, 2018, 10 (10): 1597.
|
30 |
李萌, 刘畅. 基于特征复用的膨胀-残差网络的SAR图像超分辨重建[J]. 雷达学报, 2020, 9 (2): 363- 372.
|
|
LI M , LIU C . Super-resolution reconstruction of SAR images based on feature reuse dilated-residual convolutional neural networks[J]. Journal of Radars, 2020, 9 (2): 363- 372.
|
31 |
LUO Z Y , YU J P , LIU Z H . The super-resolution reconstruction of SAR image based on the improved FSRCNN[J]. The Journal of Engineering, 2019, 2019 (19): 5975- 5978.
|
32 |
YANG W, MA Z Q, SHI Y R. SAR image super-resolution based on artificial intelligence[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022.
|
33 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the 15th European Conference on Computer Vision, 2018.
|
34 |
ZHANG W L, LIU Y H, DONG C, et al. RankSRGAN: gene-rative adversarial networks with ranker for image super-reso-lution[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019.
|
35 |
BLAU Y, MECHREZ R, TIMOFTE R, et al. The 2018 PIRM challenge on perceptual image super-resolution[C]//Proc. of the European Conference on Computer Vision, 2018.
|
36 |
LIU Y J, YU Z, LI C S. A novel quality evaluation algorithm for SAR image based on human visual system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Sympo-sium, 2013.
|
37 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proc. of the IEEE International Conference on Computer Vision, 2017.
|