12 |
XU J, SCHWING A G, URTASUN R. Learning to segment under various forms of weak supervision[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
13 |
ARASLANOV N, ROTH S. Single-stage semantic segmentation from image labels[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4253- 4262.
|
14 |
FAN J S, ZHANG Z X, SONG C, et al. Learning integral objects with intra-class discriminator for weakly-supervised semantic segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
|
15 |
LIU J H , YU C Q , YANG B B , et al. CSENet: cascade semantic erasing network for weakly-supervised semantic segmentation[J]. Neurocomputing, 2021, 453, 885- 895.
|
16 |
李阳, 刘扬, 刘国军, 等. 基于对象位置线索的弱监督图像语义分割方法[J]. 软件学报, 2020, 31 (11): 3640- 3656.
|
|
LI Y , LIU Y , LIU G J , et al. Weakly supervised image semantic segmentation method based on object location cues[J]. Journal of Software, 2020, 31 (11): 3640- 3656.
|
17 |
XU Y J , MAO Z D , CHEN Z N , et al. Context propagation embedding network for weakly supervised semantic segmentation[J]. Multimedia Tools and Applications, 2020, 79 (45): 33925- 33942.
|
18 |
白雪飞, 李文静, 王文剑. 基于显著性背景引导的弱监督语义分割网络[J]. 模式识别与人工智能, 2021, 34 (9): 824- 835.
|
|
BAI X F , LI W J , WANG W J . Saliency background guidance network for weakly-supervised semantic segmentation[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (9): 824- 835.
|
19 |
TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7472-7481.
|
20 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2223-2232.
|
21 |
PAN F, SHIN I, RAMEAU F, et al. Unsupervised intra-domain adaptation for semantic segmentation through self-supervision[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3764-3773.
|
1 |
GOODFEllOW I J , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3, 2672- 2680.
|
2 |
SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683
|
3 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 1- 1.
|
4 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015.
|
5 |
CHEN L C , PAPANDREOU G , KOKKINOS I , et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014, (4): 357- 361.
|
6 |
WANG L, LI D, ZHU Y, et al. Dual super resolution learning for semantic segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
|
7 |
ZHONG Z, LIN Z Q, BIDART R, et al. Squeeze-and-attention networks for semantic segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
8 |
XING F Z, CAMBRIA E, HUANG W B, et al. Weakly supervised semantic segmentation with superpixel embedding[C]//Proc. of the IEEE International Conference on Image Processing, 2016.
|
9 |
韩铮, 肖志涛. 基于纹元森林和显著性先验的弱监督图像语义分割方法[J]. 电子与信息学报, 2018, 40 (3): 610- 617.
|
|
HAN Z , XIAO Z T . Weakly supervised semantic segmentation based on semantic texton forest and saliency prior[J]. Journal of Electronics & Information Technology, 2018, 40 (3): 610- 617.
|
10 |
SHI Z Y , YANG Y X , HOSPEDALES T M , et al. Weakly-supervised image annotation and segmentation with objects and attributes[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (12): 2525- 2538.
|
11 |
YI L , GUO Y Q , KAO Y Y , et al. Image piece learning for weakly supervised semantic segmentation[J]. IEEE Trans.on Systems Man & Cybernetics Systems, 2017, 47 (4): 648- 659.
|
22 |
KIM M, BYUN H. Learning texture invariant representation for domain adaptation of semantic segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12975-12984.
|
23 |
LV F M, LIANG T, CHEN X, et al. Crossdomain semantic segmentation via domain-invariant interactive relation transfer[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4334-4343.
|
24 |
YANG Y C, SOATTO S. FDA: Fourier domain adaptation for semantic segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4085-4095.
|
25 |
LIU Y, ZHANG W, WANG J. Source-free domain adaptation for semantic segmentation[C]//Proc. of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition, 2021: 1215-1224.
|
26 |
MA H Y, LIN X R, WU Z F, et al. Coarse-to-fine domain adaptive semantic segmentation with photometric alignment and category-center regularization[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4051-4060.
|
27 |
GUO X Q, YANG C, LI B P, et al. Metacor-rection: domain-aware meta loss correction for unsupervised domain adaptation in semantic segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3927- 3936.
|
28 |
LUO Y W, ZHENG L, GUAN T, et al. Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation[C]//Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2507- 2516.
|
29 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proc of the IEEE Conference on Computer Vision and Pattern recognition, 2018: 7132-7141.
|
30 |
WANG Y D, ZHANG J, KAN M N, et al. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12275-12284.
|