系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (6): 1616-1623.doi: 10.12305/j.issn.1001-506X.2023.06.04

• 电子技术 • 上一篇    

融合域自适应和弱监督策略的遥感影像建筑物提取算法

庞世燕1, 郝京京1, 邢立宁2,3, 谭旭3,*   

  1. 1. 华中师范大学人工智能教育学部, 湖北 武汉 430079
    2. 国防科技大学系统工程学院, 湖南 长沙 410072
    3. 深圳职业技术学院软件学院, 广东 深圳 518055
  • 收稿日期:2021-12-16 出版日期:2023-05-25 发布日期:2023-06-01
  • 通讯作者: 谭旭
  • 作者简介:庞世燕(1987—), 女, 副教授, 博士, 主要研究方向为语义分割、变化检测
    郝京京(1996—), 男, 硕士研究生, 主要研究方向为计算机视觉、教育技术
    邢立宁(1980—), 男, 研究员, 博士, 主要研究方向为智能优化与仿真
    谭旭(1981—), 男, 教授, 博士, 主要研究方向为智能决策与机器学习应用

Weakly supervised domain adaptation algorithm for building extraction from remote sensing images

Shiyan PANG1, Jingjing HAO1, Lining XING2,3, Xu TAN3,*   

  1. 1. Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China
    2. School of System Engineering, National University of Defense Technology, Changsha 410072, China
    3. School of Software Engineering, Shenzhen Institute of Information Technology, Shenzhen 518055, China
  • Received:2021-12-16 Online:2023-05-25 Published:2023-06-01
  • Contact: Xu TAN

摘要:

常见的建筑物提取算法主要采用全监督的方式实现, 得到的模型通常在训练数据集上表现良好, 而在跨区域使用时效果不佳。基于生成对抗网络的域自适应方法虽然在一定程度上能够增强网络的迁移能力, 但由于缺乏目标域关键信息, 效果难以保证。设计了一种全新的端到端弱监督建筑物提取网络。首先, 采用像素关联模块来提升生成网络的性能; 然后, 在此基础上综合运用域自适应和图像级弱标签两种策略来优化训练过程, 从而大幅提升了网络模型的泛化扩展性能。采用3组数据对所提方法的有效性进行了验证,通过大量实验证明了所提方法可以有效提升建筑物提取的性能。同时,通过消融实验验证了网络中各个模块的有效性。

关键词: 语义分割, 建筑物提取, 弱监督, 域自适应, 生成对抗网络

Abstract:

Common building extraction algorithms were mainly implemented in a fully-supervised manner, and the resulting model usually only perform well on training data sets, but operate badly on cross domain. The domain adaptation method based on generative adversarial network (GAN) can enhance the migration ability of the network to a certain extent. However, due to the lack of key information of the target domain, it is difficult to guarantee its ideal performance. A new end-to-end weakly-supervised building extraction network is proposed in this paper, which adopts pixel correlation module (PCM) to improve the performance of the generative network, and then based on this, uses two strategies, domain adaptation and image-level weak label, to optimize the training process, thereby improving the ability of generalization and expansion of the network greatly. Three datasets are used to verify the effectiveness of the proposed method. Extensive experiments show that the proposed method can effectively improve the performance of building extraction. At the same time, ablation studies are conducted to verify the effectiveness of each module in the network.

Key words: semantic segmentation, building extraction, weakly supervision, domain adaptation, generative adversarial network (GAN)

中图分类号: