1 |
张西林, 谭跃进, 杨志伟. 多重不确定因素影响的高端装备研制任务仿真建模[J]. 系统工程与电子技术, 2018, 40 (6): 1265- 1273.
|
|
ZHANG X L , TAN Y J , YANG Z W . Simulation modeling of high-end equipment development tasks influenced by multiple uncertain factors[J]. Systems Engineering and Electronics, 2018, 40 (6): 1265- 1273.
|
2 |
崔敏龙.商业秘密保护中数据脱敏技术研究[D].西安:西安电子科技大学, 2015.
|
|
CUI M L. Research on data hyposensitization technology in trade secret protection[D]. Xi'an: Xidian University, 2015.
|
3 |
吴行飞.中小城市商业银行数据脱敏研究[D].济南:山东大学, 2016.
|
|
WU X F. Research on data hyposensitization of commercial banks in small and medium cities[D]. Jinan: Shandong University, 2016.
|
4 |
乔宏明, 梁奂. 运营商面向大数据应用的数据脱敏方法探讨[J]. 移动通信, 2015, 13, 17- 20.
|
|
QIAO H M , LIANG H . Discussion on data hyposensitization methods for operators for big data applications[J]. Mobile Communications, 2015, 13, 17- 20.
|
5 |
张嘉迅, 张传国. 网络借贷中个人信息安全保护的数据脱敏技术综述[J]. 网络安全技术与应用, 2018, 9, 73- 74.
|
|
ZHANG J X , ZHANG C G . A survey of data hyposensitization technology for personal information security protection in internet lending[J]. Network Security Technology and Application, 2018, 9, 73- 74.
|
6 |
臧昊, 赵强, 卞水荣. 基于XML的电子病历隐私数据脱敏技术的研究与设计[J]. 信息技术与信息化, 2017, 3, 111- 114.
|
|
ZANG H , ZHAO Q , BIAN S R . Research and design of electronic medical record privacy data hyposensitization technology based on XML[J]. Information Technology and Informatization, 2017, 3, 111- 114.
|
7 |
SARADA G, ABITHA N, MANIKANDAN G, et al. A few new approaches for data masking[C]//Proc.of the International Conference on Circuits, Power and Computing Technologies, 2015. DOI: 10.1109/ICCPCT.2015.7159301.
|
8 |
BAKKEN D E , RARAMESWARAN R , BLOUGH D M , et al. Data obfuscation: anonymity and desensitization of usable data sets[J]. IEEE Security & Privacy, 2004, 2 (6): 34- 41.
|
9 |
陈天莹, 陈剑锋. 大数据环境下的智能数据脱敏系统[J]. 通信技术, 2016, 49 (7): 915- 922.
doi: 10.3969/j.issn.1002-0802.2016.07.023
|
|
CHEN T Y , CHEN J F . Intelligent data desensitization system in big data environment[J]. Communications Technology, 2016, 49 (7): 915- 922.
doi: 10.3969/j.issn.1002-0802.2016.07.023
|
10 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proc.of the 27th International Conference on Neural Information Processing Systems, 2014, 2: 2672-2680.
|
11 |
刘骐宁.基于大数据的北京高端装备制造业商业模式研究[D].北京:北方工业大学, 2016.
|
|
LIU Q N. Research on business model of Beijing high-end equipment manufacturing industry based on big data[D]. Beijing: North China University of Technology, 2016.
|
12 |
CRESWELL A , WHITE T , DUMOULIN V , et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35 (1): 53- 65.
doi: 10.1109/MSP.2017.2765202
|
13 |
ZHANG H Y, XU S S, JIAO J T, et al. Stackelberg gan: towards prova-ble minimax equilibrium via multi-generator architectures[J]. arXiv preprint arXiv: 1811.08010, 2018.
|
14 |
NAKAI K , KANEHISA M . Expert system for predicting protein localization sites in gram-negative bacteria[J]. Proteins: Structure, Function, and Bioinformatics, 1991, 11 (2): 95- 110.
doi: 10.1002/prot.340110203
|
15 |
NAKAI K , KANEHISA M . A knowledge base for predicting protein localization sites in eukaryotic cells[J]. Genomics, 1992, 14 (4): 897- 911.
doi: 10.1016/S0888-7543(05)80111-9
|
16 |
BAY S D , KIBLER D , PAZZANI M J , et al. The UCI KDD archive of large data sets for data mining research and experimentation[J]. ACM SIGKDD Explorations Newsletter, 2000, 2 (2): 81- 85.
doi: 10.1145/380995.381030
|
17 |
LIAW A , WIENER M . Classification and regression by random forest[J]. R news, 2002, 2 (3): 18- 22.
|
18 |
BREIMAN L . Bagging predictors[J]. Machine learning, 1996, 24 (2): 123- 140.
|