

系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (6): 1301-1309.doi: 10.3969/j.issn.1001-506X.2020.06.13
        
               		禹明刚1,2( ), 何明1(
), 何明1( ), 张东戈1,*(
), 张东戈1,*( ), 贾连祥3(
), 贾连祥3( )
)
                  
        
        
        
        
    
收稿日期:2019-07-28
									
				
									
				
									
				
											出版日期:2020-06-01
									
				
											发布日期:2020-06-01
									
			通讯作者:
					张东戈
											E-mail:yuminggang8989@163.com;heming@126.com;329674406@qq.com;jialianxiang001@163.com
												作者简介:禹明刚(1986-),男,讲师,博士,主要研究方向为军事需求工程、体系工程。E-mail:基金资助:
        
               		Minggang YU1,2( ), Ming HE1(
), Ming HE1( ), Dongge ZHANG1,*(
), Dongge ZHANG1,*( ), Lianxiang JIA3(
), Lianxiang JIA3( )
)
			  
			
			
			
                
        
    
Received:2019-07-28
									
				
									
				
									
				
											Online:2020-06-01
									
				
											Published:2020-06-01
									
			Contact:
					Dongge ZHANG   
											E-mail:yuminggang8989@163.com;heming@126.com;329674406@qq.com;jialianxiang001@163.com
												Supported by:摘要:
针对对抗及不确定环境下的网络信息体系建设方案优选问题,考虑经典博弈论中理性和共同知识假设失效的局限,提出了基于Bayesian Stackelberg的多阶段博弈模型。首先分析网络信息体系建设方案优选需求,给出3个基本假设;在此基础上,构建反映各阶段参与人信念的博弈子情景,集结子情景形成全时域情景,并分别给出情景的策略集及支付函数;分析全时域情景的纳什均衡,预测对手可能的均衡策略;最后,集结全时域情景形成全局情景,在风险可控范围内选择全局情景中期望支付较大策略,作为较优体系方案。通过算例分析检验了该方法中己方最坏选择是“综合均衡策略”,且在风险可控范围内最终策略将严格优于该策略。
中图分类号:
禹明刚, 何明, 张东戈, 贾连祥. 基于Bayesian Stackelberg多阶段博弈的网络信息体系方案优选[J]. 系统工程与电子技术, 2020, 42(6): 1301-1309.
Minggang YU, Ming HE, Dongge ZHANG, Lianxiang JIA. Scheme optimization for network information-centric system-of-systems based on multi-stage Bayesian Stackelberg game[J]. Systems Engineering and Electronics, 2020, 42(6): 1301-1309.
 
												
												表4
子情景G2, 2收益矩阵"
| M′ | L′ | R′ | V′ | I′ | |
| M | (0.43, 0.71) | (0.43, 0.51) | (0.43, 0.77) | (0.43, 0.67) | (0.43, 0.81) | 
| L | (0.30, 0.71) | (0.30, 0.51) | (0.30, 0.77) | (0.30, 0.67) | (0.30, 0.81) | 
| R | (0.90, 0.71) | (0.90, 0.51) | (0.90, 0.77) | (0.90, 0.67) | (0.90, 0.81) | 
| V | (0.64, 0.71) | (0.64, 0.51) | (0.64, 0.77) | (0.64, 0.67) | (0.64, 0.81) | 
| I | (0.85, 0.71) | (0.85, 0.51) | (0.85, 0.77) | (0.85, 0.67) | (0.85, 0.81) | 
 
												
												表5
全时域情景G1收益矩阵"
| (E′, M′) | (E′, L′) | (E′, R′) | (H′, M′) | (H′, L′) | (H′, R′) | |
| (E, M) | (0.73, 0.65) | (0.70, -1.00) | (0.70, 0.15) | (0.73, 0.82) | (0.69, -0.15) | (0.70, -0.14) | 
| (E, L) | (0.45, 0.59) | (0.43, -1.10) | (0.42, 0.17) | (0.46, 0.80) | (0.45, -0.16) | (0.41, -0.12) | 
| (E, R) | (-0.27, 0.61) | (-0.20, -0.95) | (-0.25, 0.15) | (-0.25, 0.82) | (-0.23, -0.16) | (-0.26, -0.16) | 
| (H, M) | (-0.63, 0.63) | (-0.61, -0.96) | (-0.61, 0.16) | (-0.63, 0.81) | (-0.64, -0.14) | (-0.70, -0.12) | 
| (H, L) | (0.24, 0.60) | (0.25, -1.00) | (0.27, 0.13) | (0.22, 0.80) | (0.22, -0.13) | (0.23, -0.13) | 
| (H, R) | (-0.08, 0.64) | (-0.07, -1.20) | (-0.06, 0.14) | (-0.08, 0.79) | (-0.06, -0.15) | (-0.07, -0.15) | 
 
												
												表6
全时域情景G2收益矩阵"
| (E′, M′) | (E′, L′) | (E′, R′) | (E′, V′) | (E′, I′) | |
| (E, M) | (0.73, 0.65) | (0.70, -1.00) | (0.70, 0.15) | (0.71, -0.13) | (0.69, 0.50) | 
| (E, L) | (0.45, 0.59) | (0.43, -1.10) | (0.42, 0.17) | (0.41, -0.11) | (0.45, 0.52) | 
| (E, R) | (-0.27, 0.61) | (-0.20, -0.95) | (-0.25, 0.15) | (-0.26, -0.14) | (-0.24, 0.55) | 
| (E, V) | (0.37, 0.67) | (0.37, -1.00) | (0.35, 0.16) | (0.36, -0.13) | (0.34, 0.57) | 
| (E, I) | (-0.12, 0.65) | (-0.10, -0.97) | (-0.12, 0.14) | (-0.11, -0.11) | (-0.14, 0.50) | 
| (H, M) | (-0.63, 0.63) | (-0.61, -0.96) | (-0.61, 0.16) | (-0.62, -0.12) | (-0.62, 0.51) | 
| (H, L) | (0.24, 0.60) | (0.25, -1.10) | (0.27, 0.13) | (0.24, -0.12) | (0.23, 0.61) | 
| (H, R) | (-0.08, 0.64) | (-0.07, -1.20) | (-0.06, 0.14) | (-0.08, -0.13) | (-0.09, 0.50) | 
| (H, V) | (0.77, 0.65) | (0.78, -1.00) | (0.77, 0.15) | (0.75, -0.15) | (0.75, 0.50) | 
| (H′, M′) | (H′, L′) | (H′, R′) | (H′, V′) | (H′, I′) | |
| (E, M) | (0.73, 0.82) | (0.69, -0.15) | (0.70, -0.14) | (0.72, 0.23) | (0.68, 0.87) | 
| (E, L) | (0.46, 0.80) | (0.45, -0.16) | (0.41, -0.12) | (0.44, 0.22) | (0.40, 0.88) | 
| (E, R) | (-0.25, 0.82) | (-0.23, -0.16) | (-0.26, -0.16) | (-0.25, 0.22) | (-0.27, 0.89) | 
| (E, V) | (0.34, 0.81) | (0.33, -0.15) | (0.38, -0.15) | (0.37, 0.20) | (0.70, 0.85) | 
| (E, I) | (-0.12, 0.79) | (-0.10, -0.15) | (-0.11, -0.14) | (-0.12, 0.21) | (-0.11, 0.85) | 
| (H, M) | (-0.63, 0.81) | (-0.64, -0.14) | (-0.70, -0.12) | (-0.60, 0.23) | (-0.62, 0.85) | 
| (H, L) | (0.22, 0.80) | (0.22, -0.13) | (0.23, -0.13) | (0.22, 0.20) | (0.25, 0.88) | 
| (H, R) | (-0.08, 0.79) | (-0.06, -0.15) | (-0.07, -0.15) | (-0.06, 0.22) | (-0.07, 0.86) | 
| (H, V) | (0.78, 0.62) | (0.73, -0.14) | (0.75, -0.14) | (0.75, 0.21) | (0.68, 0.89) | 
 
												
												表7
全时域情景G3收益矩阵"
| (E′, M′) | (E′, L′) | (E′, R′) | (H′, M′) | (H′, L′) | |
| (E, M) | (0.70, 0.67) | (0.66, -0.62) | (0.67, 0.14) | (0.70, 0.69) | (0.70, -0.11) | 
| (E, L) | (0.46, 0.65) | (0.45, -0.60) | (0.46, 0.13) | (0.44, 0.70) | (0.40, -0.12) | 
| (E, R) | (-0.20, 0.65) | (-0.21, -0.60) | (-0.19, 0.12) | (-0.18, 0.77) | (-0.20, -0.10) | 
| (H, M) | (-0.20, 0.66) | (-0.25, -0.62) | (-0.25, 0.13) | (-0.28, 0.77) | (-0.29, -0.11) | 
| (H, L) | (0.25, 0.67) | (0.24, -0.61) | (0.22, 0.15) | (0.25, 0.76) | (0.23, -0.10) | 
| (H, R) | (-0.10, 0.64) | (-0.09, -0.63) | (-0.11, 0.13) | (-0.11, 0.75) | (-0.10, -0.12) | 
| (B, M) | (0.00, 0.65) | (0.00, -0.63) | (0.00, 0.14) | (0.00, 0.75) | (0.00, -0.11) | 
| (B, L) | (0.58, 0.64) | (0.56, -0.62) | (0.56, 0.14) | (0.57, 0.76) | (0.57, -0.12) | 
| (B, R) | (-0.06, 0.65) | (-0.05, -0.61) | (-0.06, 0.13) | (-0.06, 0.74) | (-0.07, -0.10) | 
| (H′, R′) | (B′, M′) | (B′, L′) | (B′, R′) | ||
| (E, M) | (0.65, -0.14) | (0.65, 0.75) | (0.64, -0.49) | (0.70, 0.78) | |
| (E, L) | (0.43, -0.15) | (0.41, 0.70) | (0.42, -0.48) | (0.45, 0.65) | |
| (E, R) | (-0.22, -0.16) | (-0.20, 0.70) | (-0.18, -0.50) | (-0.19, 0.65) | |
| (H, M) | (-0.27, -0.15) | (-0.28, 0.71) | (-0.26, -0.51) | (-0.21, 0.67) | |
| (H, L) | (0.23, -0.14) | (0.21, 0.72) | (0.22, -0.51) | (0.22, 0.68) | |
| (H, R) | (-0.12, -0.13) | (-0.09, 0.74) | (-0.12, -0.53) | (-0.10, 0.66) | |
| (B, M) | (0.00, -0.13) | (0.00, 0.74) | (0.00, -0.53) | (0.00, 0.65) | |
| (B, L) | (0.55, -0.15) | (0.56, 0.75) | (0.57, -0.50) | (0.58, 0.65) | |
| (B, R) | (-0.05, -0.13) | (-0.05, 0.71) | (-0.06, -0.52) | (-0.07, 0.60) | 
 
												
												表8
全时域情景G4收益矩阵"
| (E′, M′) | (E′, L′) | (E′, R′) | (E′, V′) | (E′, I′) | (H′, M′) | (H′, L′) | |
| (E, M) | (0.70, 0.67) | (0.66, -0.62) | (0.67, 0.14) | (0.69, 0.50) | (0.69, 0.60) | (0.70, 0.69) | (0.70, -0.11) | 
| (E, L) | (0.46, 0.65) | (0.45, -0.60) | (0.46, 0.13) | (0.44, 0.50) | (0.43, 0.63) | (0.44, 0.70) | (0.40, -0.12) | 
| (E, R) | (-0.20, 0.65) | (-0.21, -0.60) | (-0.19, 0.12) | (-0.20, 0.48) | (-0.22, 0.63) | (-0.18, 0.77) | (-0.20, -0.10) | 
| (E, V) | (0.15, 0.67) | (0.16, -0.62) | (0.15, 0.12) | (0.17, 0.50) | (0.17, 0.62) | (0.14, 0.79) | (0.15, -0.10) | 
| (E, I) | (0.10, 0.67) | (0.11, -0.62) | (0.09, 0.13) | (0.10, 0.50) | (0.12, 0.62) | (0.11, 0.77) | (0.10, -0.10) | 
| (H, M) | (-0.20, 0.66) | (-0.25, -0.62) | (-0.25, 0.13) | (-0.21, 0.49) | (-0.20, 0.64) | (-0.28, 0.77) | (-0.29, -0.11) | 
| (H, L) | (0.25, 0.67) | (0.24, -0.61) | (0.22, 0.15) | (0.25, 0.50) | (0.26, 0.63) | (0.25, 0.76) | (0.23, -0.10) | 
| (H, R) | (-0.10, 0.64) | (-0.09, -0.63) | (-0.11, 0.13) | (-0.11, 0.48) | (-0.12, 0.63) | (-0.11, 0.75) | (-0.10, -0.12) | 
| (H, V) | (-0.15, 0.67) | (-0.13, -0.62) | (-0.13, 0.13) | (-0.16, 0.48) | (-0.18, 0.64) | (-0.17, 0.79) | (-0.17, -0.10) | 
| (B, M) | (0.00, 0.65) | (0.00, -0.63) | (0.00, 0.14) | (0.00, 0.50) | (0.00, 0.63) | (0.00, 0.75) | (0.00, -0.11) | 
| (B, L) | (0.58, 0.64) | (0.56, -0.62) | (0.56, 0.14) | (0.56, 0.50) | (0.57, 0.60) | (0.57, 0.76) | (0.57, -0.12) | 
| (B, R) | (-0.06, 0.65) | (-0.05, -0.61) | (-0.06, 0.13) | (-0.05, 0.51) | (-0.06, 0.60) | (-0.06, 0.74) | (-0.07, -0.10) | 
| (B, V) | (0.40, 0.67) | (0.38, -0.63) | (0.38, 0.13) | (0.40, 0.50) | (0.40, 0.63) | (0.39, 0.78) | (0.40, -0.12) | 
| (B, I) | (0.66, 0.66) | (0.65, -0.62) | (0.65, 0.14) | (0.64, 0.51) | (0.64, 0.61) | (0.67, 0.79) | (0.66, -0.10) | 
| (H′, R′) | (H′, V′) | (H′, I′) | (B′, M′) | (B′, L′) | (B′, R′) | (B′, I′) | |
| (E, M) | (0.65, -0.14) | (0.65, -0.18) | (0.67, 0.42) | (0.65, 0.75) | (0.64, -0.49) | (0.70, 0.65) | (0.67, 0.13) | 
| (E, L) | (0.43, -0.15) | (0.46, -0.20) | (0.41, 0.42) | (0.41, 0.70) | (0.42, -0.48) | (0.45, 0.65) | (0.45, 0.13) | 
| (E, R) | (-0.22, -0.16) | (-0.19, -0.18) | (-0.18, 0.43) | (-0.20, 0.70) | (-0.18, -0.50) | (-0.19, 0.65) | (-0.21, 0.16) | 
| (E, V) | (0.14, -0.15) | (0.14, -0.18) | (0.16, 0.43) | (0.17, 0.75) | (0.15, -0.52) | (0.14, 0.64) | (0.14, 0.15) | 
| (E, I) | (0.11, -0.13) | (0.12, -0.20) | (0.12, 0.40) | (0.10, 0.75) | (0.12, -0.50) | (0.11, 0.60) | (0.10, 0.15) | 
| (H, M) | (-0.27, -0.15) | (-0.27, -0.22) | (-0.27, 0.40) | (-0.28, 0.71) | (-0.26, -0.51) | (-0.21, 0.67) | (-0.21, 0.16) | 
| (H, L) | (0.23, -0.14) | (0.23, -0.23) | (0.24, 0.43) | (0.21, 0.72) | (0.22, -0.51) | (0.22, 0.68) | (0.25, 0.15) | 
| (H, R) | (-0.12, -0.13) | (-0.09, -0.22) | (-0.11, 0.44) | (-0.09, 0.74) | (-0.12, -0.53) | (-0.10, 0.66) | (-0.10, 0.13) | 
| (H, V) | (-0.15, -0.15) | (-0.15, -0.22) | (-0.16, 0.43) | (-0.13, 0.75) | (-0.13, -0.50) | (-0.15, 0.60) | (-0.14, 0.15) | 
| (B, M) | (0.00, -0.13) | (0.00, -0.20) | (0.00, 0.40) | (0.00, 0.74) | (0.00, -0.53) | (0.00, 0.65) | (0.00, 0.14) | 
| (B, L) | (0.55, -0.15) | (0.56, -0.19) | (0.56, 0.42) | (0.56, 0.75) | (0.57, -0.50) | (0.58, 0.65) | (0.55, 0.14) | 
| (B, R) | (-0.05, -0.13) | (-0.07, -0.20) | (-0.06, 0.43) | (-0.05, 0.71) | (-0.06, -0.52) | (-0.07, 0.60) | (-0.05, 0.15) | 
| (B, V) | (0.41, -0.15) | (0.40, -0.19) | (0.41, 0.44) | (0.40, 0.73) | (0.39, -0.52) | (0.39, 0.64) | (0.40, 0.15) | 
| (B, I) | (0.66, -0.13) | (0.65, -0.20) | (0.66, 0.43) | (0.64, 0.75) | (0.64, -0.50) | (0.67, 0.66) | (0.67, 0.14) | 
 
												
												表9
全局情景G收益矩阵"
| (E′, M′) | (E′, L′) | (E′, R′) | (E′, V′) | (E′, I′) | (H′, M′) | (H′, L′) | |
| (E, M) | (0.71, 0.66) | (0.68, -0.77) | (0.68, 0.14) | (0.70, 0.25) | (0.69, 0.56) | (0.71, 0.74) | (0.70, -0.13) | 
| (E, L) | (0.46, 0.63) | (0.44, -0.80) | (0.44, 0.15) | (0.44, 0.50) | (0.43, 0.63) | (0.44, 0.70) | (0.40, -0.12) | 
| (E, R) | (-0.23, 0.63) | (-0.21, -0.74) | (-0.19, 0.12) | (-0.20, 0.48) | (-0.22, 0.63) | (-0.18, 0.77) | (-0.20, -0.10) | 
| (E, V) | (0.24, 0.67) | (0.16, -0.62) | (0.15, 0.12) | (0.17, 0.50) | (0.17, 0.62) | (0.14, 0.79) | (0.15, -0.10) | 
| (E, I) | (0.01, 0.66) | (0.11, -0.62) | (0.09, 0.13) | (0.10, 0.50) | (0.12, 0.62) | (0.11, 0.77) | (0.10, -0.10) | 
| (H, M) | (-0.37, 0.65) | (-0.25, -0.62) | (-0.25, 0.13) | (-0.21, 0.49) | (-0.20, 0.64) | (-0.28, 0.77) | (-0.29, -0.11) | 
| (H, L) | (0.25, 0.64) | (0.24, -0.61) | (0.22, 0.15) | (0.25, 0.50) | (0.26, 0.63) | (0.25, 0.76) | (0.23, -0.10) | 
| (H, R) | (-0.09, 0.64) | (-0.09, -0.63) | (-0.11, 0.13) | (-0.11, 0.48) | (-0.12, 0.63) | (-0.11, 0.75) | (-0.10, -0.12) | 
| (H, V) | (0.22, 0.66) | (-0.13, -0.62) | (-0.13, 0.13) | (-0.16, 0.48) | (-0.18, 0.64) | (-0.17, 0.79) | (-0.17, -0.10) | 
| (B, M) | (0.00, 0.65) | (0.00, -0.63) | (0.00, 0.14) | (0.00, 0.50) | (0.00, 0.63) | (0.00, 0.75) | (0.00, -0.11) | 
| (B, L) | (0.58, 0.64) | (0.56, -0.62) | (0.56, 0.14) | (0.56, 0.50) | (0.57, 0.60) | (0.57, 0.76) | (0.57, -0.12) | 
| (B, R) | (-0.06, 0.65) | (-0.05, -0.61) | (-0.06, 0.13) | (-0.05, 0.51) | (-0.06, 0.60) | (-0.06, 0.74) | (-0.07, -0.10) | 
| (B, V) | (0.40, 0.67) | (0.38, -0.63) | (0.38, 0.13) | (0.40, 0.50) | (0.40, 0.63) | (0.39, 0.78) | (0.40, -0.12) | 
| (B, I) | (0.66, 0.66) | (0.65, -0.62) | (0.65, 0.14) | (0.64, 0.51) | (0.64, 0.61) | (0.67, 0.79) | (0.66, -0.10) | 
| (H′, R′) | (H′, V′) | (H′, I′) | (B′, M′) | (B′, L′) | (B′, R′) | (B′, I′) | |
| (E, M) | (0.67, -0.14) | (0.68, -0.02) | (0.69, 0.60) | (0.65, 0.75) | (0.60, -0.49) | (0.70, 0.65) | (0.67, 0.13) | 
| (E, L) | (0.43, -0.15) | (0.46, -0.20) | (0.41, 0.42) | (0.41, 0.70) | (0.42, -0.48) | (0.45, 0.65) | (0.45, 0.13) | 
| (E, R) | (-0.22, -0.16) | (-0.19, -0.18) | (-0.18, 0.43) | (-0.20, 0.70) | (-0.18, -0.50) | (-0.19, 0.65) | (-0.21, 0.16) | 
| (E, V) | (0.14, -0.15) | (0.14, -0.18) | (0.16, 0.43) | (0.17, 0.75) | (0.15, -0.52) | (0.14, 0.64) | (0.14, 0.15) | 
| (E, I) | (0.11, -0.13) | (0.12, -0.20) | (0.12, 0.40) | (0.10, 0.75) | (0.12, -0.50) | (0.11, 0.60) | (0.10, 0.15) | 
| (H, M) | (-0.27, -0.15) | (-0.27, -0.22) | (-0.27, 0.40) | (-0.28, 0.71) | (-0.26, -0.51) | (-0.21, 0.67) | (-0.21, 0.16) | 
| (H, L) | (0.23, -0.14) | (0.23, -0.23) | (0.24, 0.43) | (0.21, 0.72) | (0.22, -0.51) | (0.22, 0.68) | (0.25, 0.15) | 
| (H, R) | (-0.12, -0.13) | (-0.09, -0.22) | (-0.11, 0.44) | (-0.09, 0.74) | (-0.12, -0.53) | (-0.10, 0.66) | (-0.10, 0.13) | 
| (H, V) | (-0.15, -0.15) | (-0.15, -0.22) | (-0.16, 0.43) | (-0.13, 0.75) | (-0.13, -0.50) | (-0.15, 0.60) | (-0.14, 0.15) | 
| (B, M) | (0.00, -0.13) | (0.00, -0.20) | (0.00, 0.40) | (0.00, 0.74) | (0.00, -0.53) | (0.00, 0.65) | (0.00, 0.14) | 
| (B, L) | (0.55, -0.15) | (0.56, -0.19) | (0.56, 0.42) | (0.56, 0.75) | (0.57, -0.50) | (0.58, 0.65) | (0.55, 0.14) | 
| (B, R) | (-0.05, -0.13) | (-0.07, -0.20) | (-0.06, 0.43) | (-0.05, 0.71) | (-0.06, -0.52) | (-0.07, 0.60) | (-0.05, 0.15) | 
| (B, V) | (0.41, -0.15) | (0.40, -0.19) | (0.41, 0.44) | (0.40, 0.73) | (0.39, -0.52) | (0.39, 0.64) | (0.40, 0.15) | 
| (B, I) | (0.66, -0.13) | (0.65, -0.20) | (0.66, 0.43) | (0.64, 0.75) | (0.64, -0.50) | (0.67, 0.66) | (0.67, 0.14) | 
 
												
												表10
全时域情景分析"
| Gm | 纳什均衡 | 期望支付 ${\rm{E}}[{\Psi _R}(\overline {N_R^m}, \overline {N_B^m})]$ | |
| $\overline {N_R^m} $ | $\overline {N_B^m} $ | ||
| G1 | (E, M) | (H′, M′) | 0.73 | 
| G2 | (0.4(E, M), 0.3(E, V), 0.3(H, V)) | (0.7(H′, M′), 0.3(H′, I′)) | 0.65 | 
| G3 | (E′, M′) | (B′, R′) | 0.70 | 
| G4 | (0.6(E, M), 0.4(H, L)) | (0.2(E′, M′), 0.5(B′, M′), 0.3(B′, R′)) | 0.49 | 
| 综合均衡 | 综合期望支付 ${\rm{E}}[{\Psi _R}(\hat R, \hat B)]$ | ||
| ${\hat R}$ | ${\hat B}$ | ||
| (0.76(E, M), 0.06(E, V), 0.06(H, V), 0.12(H, L)) | (0.06(E′, M′), 0.34(H′, M′), 0.06(H′, I′), 0.15(B′, M′), 0.39(B′, R′)) | 0.63 | |
| 1 | 罗爱民, 刘俊先, 曹江, 等. 网络信息体系概念与致胜机理研究[J]. 指挥与控制学报, 2016, 2 (4): 272- 276. | 
| LUO A M , LIU J X , CAO J , et al. The concept and winning mechanism of networking information-centric system of systems[J]. Journal of Command and Control, 2016, 2 (4): 272- 276. | |
| 2 | 禹明刚,王智学,蒋猛.网络信息体系能力需求描述及分析方法[C]//第六届中国指挥控制大会, 2018: 1203-1209. | 
| YU M G, WANG Z X, JIANG M. A method of modeling and analyzing capability requirement of net-centric information system-of-systems[C]//Proc.of the 6th China Conference on Command and Control, 2018: 1203-1209. | |
| 3 | 禹明刚, 王智学. 网络信息体系能力发展规律初探[J]. 军事运筹与系统工程, 2018, 32 (3): 30- 36. | 
| YU M G , WANG Z X . A preliminary study on the law of capacity development of NICSoS[J]. Military Operations Research and Systems Engineering, 2018, 32 (3): 30- 36. | |
| 4 | 禹明刚, 倪金盾, 权冀川, 等. 基于ANP的网络信息体系能力相关性模型研究[J]. 指挥与控制学报, 2018, 4 (4): 291- 296. | 
| YU M G , NI J D , QUAN J C , et al. Capability correlation model of net-centric information system-of-systems based on ANP[J]. Journal of Command and Control, 2018, 4 (4): 291- 296. | |
| 5 | 禹明刚,权冀川,张东戈,等.一种基于遗传算法的NIC-SoS发展路线图优选方法[C]//第七届中国指挥控制大会, 2019: 1203-1209. | 
| YU M G, QUAN J C, ZHANG D G, et al.Road map optimizing method of networking information-centric system-of-systems based on genetic algorithm[C]//Proc.of the 7th China Confe-rence on Command and Control, 2019: 1203-1209. | |
| 6 | 禹明刚, 何明, 权冀川. 基于能力价值的NIC-SoS演化建模及分析方法[J]. 兵器装备工程学报, 2020, 41 (1): 111- 116. | 
| YU M G , HE M , QUAN J C . Method of modeling and analyzing capability requirement of networking information-centric system-of-systems[J]. Journal of Ordnance Equipment Engineering, 2020, 41 (1): 111- 116. | |
| 7 | 张维迎. 博弈与社会[M]. 北京: 北京大学出版社, 2013. | 
| ZHANG W Y . Game and society[M]. Beijing: Peking University Press, 2013. | |
| 8 | 陈建先. 博弈理论框架:一个理论体系的构建[J]. 重庆理工大学学报, 2018, 32 (1): 88- 95. | 
| CHEN J X . Study on the theoretical framework of game theory: the construction of the theoretical system[J]. Journal of Chongqing University of Technology, 2018, 32 (1): 88- 95. | |
| 9 | HARSSANYI J C . Games with incomplete information played by "Bayesian" players, parts Ⅰ[J]. Management Science, 1967, 14, 159- 182. | 
| 10 | HARSSANYI J C . Games with incomplete information played by "Bayesian" players, parts Ⅱ[J]. Management Science, 1967, 14, 320- 334. | 
| 11 | HARSSANYI J C . Games with incomplete information played by "Bayesian" players, parts Ⅲ[J]. Management Science, 1967, 14, 486- 502. | 
| 12 | 韩传峰, 孟令鹏, 张超, 等. 基于完全信息动态博弈的反恐设施选址模型[J]. 系统工程理论与实践, 2012, 32 (2): 366- 372. | 
| HAN C F , MENG L P , ZHANG C , et al. Location of terror response facilities based on dynamic game of complete information[J]. Systems Engineering—Theory&Practice, 2012, 32 (2): 366- 372. | |
| 13 | LUCE R , HOWARD R . Games and decisions: introduction and critical survey[M]. New York: Wiley, 1957. | 
| 14 | 徐金华, 李江磊. 军事安全风险评估建模问题初探[J]. 军事运筹与系统工程, 2017, 31 (3): 5- 8. | 
| XU J H , LI J L . Study on modeling of military safety risk assessment[J]. Military Operation Research and Systems Engineering, 2017, 31 (3): 5- 8. | |
| 15 | 曹强, 荆涛. 武器装备体系结构演化博弈框架[J]. 军事运筹与系统工程, 2015, 29 (1): 49- 56. | 
| CAO Q , JING T . Evolutionary game framework for armament system architecture[J]. Military Operation Research and Systems Engineering, 2015, 29 (1): 49- 56. | |
| 16 | 张维明, 杨国利, 朱承, 等. 网络信息体系建模、博弈与演化研究[J]. 指挥与控制学报, 2016, 2 (4): 265- 271. | 
| ZHANG W M , YANG G L , ZHU C , et al. Modeling, games and evolution in networking information-centric system of systems[J]. Journal of Command and Control, 2016, 2 (4): 265- 271. | |
| 17 | 刘飞,张晓杰,闫石.基于博弈理论构建作战方案评估方法[C]//第三届中国指挥控制大会, 2015: 881-885. | 
| LIU F, ZHANG X J, YAN S. Research on estimating of structure battle plan with game theory method[C]//Proc.of the 3rd China Conference on Command and Control, 2015: 881-885. | |
| 18 | 王运成,陈楚湘,郭晓峰.基于博弈论的中越南海形势研究[C]//第28届中国控制与决策大会, 2016: 184-188. | 
| WANG Y C, CHEN C X, GUO X F. Reasearch on the situation of China and Vietnam in the south China Sea based on game theory[C]//Proc.of the 28th Chinese Control and Decision Conference, 2016: 184-188. | |
| 19 | ELSADANY A A , AGIZA H N , ELABBASY E M . Complex dynamics and chaos control of heterogeneous quadropoly game[J]. Applied Mathematics and Computation, 2013, 219 (24): 11110- 11118. | 
| 20 | YIN J Z , HAMILTON M H . The conundrum of US-China trade relations through game theory modelling[J]. Journal of Applied Business and Economics, 2018, 20 (8): 27- 32. | 
| 21 | ELSADANY A A . Competition analysis of a triopoly game with bounded rationality[J]. Chaos, Solitons & Fractals, 2012, 45 (11): 1343- 1348. | 
| 22 | BENNETT P G , DANDO M R . Complex strategic analysis: a hypergame study of the fall France[J]. Journal of the Operational Research Society, 1979, 30 (1): 23- 32. | 
| 23 | VANE R , LEHNER P . Using hypergames to increase planned payoff and reduce risk[J]. Autonomous Agents and Multi-Agent Systems, 2002, 5 (3): 365- 380. | 
| 24 | NOVANI S, KIJIMA K. Symbiotic hypergame analysis of value co-creation process in service system[C]//Proc.of the 7th International Conference on Service Systems and Service Management, 2010. | 
| 25 | 姜鑫, 杜正军, 王长春, 等. 不确定性环境下的多阶段军事对抗决策方法[J]. 系统工程理论与实践, 2013, 33 (8): 2163- 2168. | 
| JIANG X , DU Z J , WANG C C , et al. Method of multistage military conflict decision-making in uncertainty environments[J]. Systems Engineering—Theory & Practice, 2013, 33 (8): 2163- 2168. | |
| 26 | 姜鑫, 杜正军, 王长春, 等. 基于决策网的军事决策方法[J]. 系统工程理论与实践, 2011, 31 (7): 1387- 1393. | 
| JIANG X , DU Z J , WANG C C , et al. Military decision-making method based on network of games[J]. Systems Engineering—Theory & Practice, 2011, 31 (7): 1387- 1393. | |
| 27 | 王震, 袁勇, 安波, 等. 安全博弈论研究综述[J]. 指挥与控制学报, 2015, 1 (2): 121- 149. | 
| WANG Z , YUAN Y , AN B , et al. An overview of security games[J]. Journal of Command and Control, 2015, 1 (2): 121- 149. | |
| 28 | NGUYEN T H, YADAV A. Regret-based optimization and preference elicitation for stackelberg security games with uncertainty[C]//Proc.of the 28th AAAI Conference on Artificial Intelligence, 2014: 756-762. | 
| 29 | JIANG A X, YIN Z. Game-theoretic randomization for security patrolling with dynamic execution uncertainty[C]//Proc.of the International Conference on Autonomous Agents and Multi-Agent Systems, 2013: 207-214. | 
| 30 | AN B, BROWN M. Security games with surveillance cost and optimal timing of attack execution[C]//Proc.of the International Conference on Autonomous Agents and Multi-Agent Systems, 2013: 223-230. | 
| 31 | VON S H . Marktform und gleichgewicht[M]. New York: Springer, 1934. | 
| 32 | PARUCHURI P, PEARCE J P. Playing games for security: an effcient exact algorithm for solving Bayesian Stackelberg games[C]// Proc.of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, 2008: 895-902. | 
| 33 | 凌胜银.毫不动摇地坚持积极防御战略思想[N].解放军报, 2017-04-19(007). | 
| LING S Y. Unswervingly adhere to the strategic thought of active defense[N]. PLA Daily, 2017-04-19(007). | |
| 34 | 景文强, 余波, 李昂阳, 等. 天地一体化信息网络主动防御安全体系研究[J]. 信息技术与网络安全, 2019, 38 (8): 17- 21. | 
| JING W Q , YU B , LI A Y , et al. Research on active defense security system of space-earth integration information network[J]. Information Technology and Network Security, 2019, 38 (8): 17- 21. | |
| 35 | 王智学, 禹明刚. 网络信息体系的需求建模与分析框架[J]. 指挥信息系统与技术, 2017, 8 (5): 1- 8. | 
| WANG Z X , YU M G . Analysis framework for requirement mo-deling for net-centric information system-of-systems[J]. Command Information System and Technology, 2017, 8 (5): 1- 8. | |
| 36 | 樊延平, 郭齐胜, 王金良. 面向任务的装备体系作战能力需求满足度分析方法[J]. 系统工程与电子技术, 2016, 38 (8): 1826- 1832. | 
| FAN Y P , GUO Q S , WANG J L . Task-oriente requirement satisfactory degree analysis method for combat capability of equipment system of systems[J]. Systems Engineering and Electronics, 2016, 38 (8): 1826- 1832. | |
| 37 | LETCHFORD J , KORCHYK D , CONITZER V . On the value of commitment[J]. Autonomous Agents and Multi-Agent Systems, 2014, 28 (6): 986- 1016. | 
| 38 | 张杰勇, 何宜超, 孙昱, 等. 网络信息体系联动的影响因素重要性等级评估方法[J]. 系统工程与电子技术, 2019, 41 (10): 2287- 2292. | 
| ZHANG J Y , HE Y C , SUN Y , et al. Evaluation method of importance level of influencing factors of network information system linkage[J]. Systems Engineering and Electronics, 2019, 41 (10): 2287- 2292. | |
| 39 | 梁维泰, 黄松华, 朱涛. 网络信息体系运作机理与关键技术[J]. 火力与指挥控制, 2019, 44 (5): 1- 5. | 
| LIANG W T , HUANG S H , ZHU T . Operation mechanism and key technology of network information system[J]. Fire Control and Command Control, 2019, 44 (5): 1- 5. | |
| 40 | 闫文虎.正确理解新时代军队使命任务[N].解放军报, 2019-07-26(004). | 
| YAN W H. A correct understanding of the mission and task of the army in the new era[N].PLA Daily, 2019-07-26(004). | |
| 41 | 李瑞晨, 孙俭, 俞启宜. 星球大战与美苏太空争霸[M]. 北京: 世界知识出版社, 1989. | 
| LI R C , SUN J , YU Q Y . Star Wars and space supremacy between US and Soviet Union[M]. Beijing: Word Knowledge Press, 1989. | |
| 42 | 王洋. 美苏军备竞赛与控制研究[M]. 北京: 军事科学出版社, 1993. | 
| WANG Y . Research on arms race and control in the US and Soviet Union[M]. Beijing: Military Science Press, 1993. | |
| 43 | PITA J , JAIN M . Robust solutions to Stackelberg games: addressing bounded rationality and limited observations in human cognition[J]. Artifcial Intelligence, 2010, 174 (15): 1142- 1171. | 
| [1] | 王哲, 李建华, 康东. 网络信息体系双层异质相依网络模型鲁棒性[J]. 系统工程与电子技术, 2021, 43(4): 961-969. | 
| [2] | 王哲, 李建华, 刘子杨, 康东. 基于功能依赖的网络信息体系建模及重心分析[J]. 系统工程与电子技术, 2021, 43(10): 2876-2883. | 
| [3] | 何崇林, 孙子文. IWSN物理层防全双工攻击节点的多层Stackelberg博弈模型[J]. 系统工程与电子技术, 2021, 43(10): 2931-2939. | 
| [4] | 张杰勇, 何宜超, 孙昱, 钟赟, 焦志强. 网络信息体系联动的影响因素重要性等级评估方法[J]. 系统工程与电子技术, 2019, 41(10): 2287-2292. | 
| [5] | 闫雪飞, 李新明, 刘东, 王寿彪. 基于Nash-Q的网络信息体系对抗仿真技术[J]. 系统工程与电子技术, 2018, 40(1): 217-224. | 
| [6] | 王玮, 叶强, 谢春思, 李涛. 基于前景理论的编队作战决心方案优选研究[J]. 系统工程与电子技术, 2015, 37(2): 331-335. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||