1 |
张君毅, 李淳, 杨勇. 认知通信对抗关键技术研究[J]. 无线电工程, 2020, 50 (8): 619- 623.
doi: 10.3969/j.issn.1003-3106.2020.08.001
|
|
ZHANG J Y , LI C , YANG Y . A study on key techniques in cognitive communication countermeasures[J]. Radio Engineering, 2020, 50 (8): 619- 623.
doi: 10.3969/j.issn.1003-3106.2020.08.001
|
2 |
SARKER I H . Machine learning: algorithms, real-world applications and research directions[J]. SN Computer Science, 2021, 2 (3): 160.
doi: 10.1007/s42979-021-00592-x
|
3 |
GREENER J G , KANDATHIL S M , MOFFAT L , et al. A guide to machine learning for biologists[J]. Nature Reviews Molecular Cell Biology, 2022, 23 (1): 40- 55.
doi: 10.1038/s41580-021-00407-0
|
4 |
BENOS L , TAGARAKIS A C , DOLIAS G , et al. Machine learning in agriculture: a comprehensive updated review[J]. Sensors, 2021, 21 (11): 3758.
doi: 10.3390/s21113758
|
5 |
RAI R , TIWARI M K , IVANOV D , et al. Machine learning in manufacturing and industry 4.0 applications[J]. International Journal of Production Research, 2021, 59 (16): 4773- 4778.
doi: 10.1080/00207543.2021.1956675
|
6 |
刘永贵, 胡国平. 基于DRFM的遗传算法干扰技术研究[J]. 无线电工程, 2009, 39 (6): 31- 33.
doi: 10.3969/j.issn.1003-3106.2009.06.011
|
|
LIU Y G , HU G P . Research on DRFM jamming rechnology based on genetic algorithm[J]. Radio Engineering, 2009, 39 (6): 31- 33.
doi: 10.3969/j.issn.1003-3106.2009.06.011
|
7 |
AMURU S, BUEHRER R M. Optimal jamming using delayed learning[C]//Proc. of the IEEE Military Communications Conference, 2014: 1528-1533.
|
8 |
WANG X , ZHANG S N , ZHU L Z , et al. Research on anti-narrowband AM jamming of ultra-wideband impulse radio detection radar based on improved singular spectrum analysis[J]. Measurement, 2022, 188, 110386.
doi: 10.1016/j.measurement.2021.110386
|
9 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proc. of the 27th International Conference on Advances in Neural Information Processing Systems, 2014: 2672-2680.
|
10 |
GUI J , SUN Z N , WEN Y G , et al. A review on generative adversarial networks: algorithms, theory, and applications[J]. IEEE Trans.on Knowledge and Data Engineering, 2021, 35 (4): 3313- 3332.
|
11 |
TOSHPULATOV M , LEE W , LEE S . Generative adversarial networks and their application to 3D face generation: a survey[J]. Image and Vision Computing, 2021, 108, 104119.
doi: 10.1016/j.imavis.2021.104119
|
12 |
WANG Z W , SHE Q , WARD T E . Generative adversarial networks in computer vision: a survey and taxonomy[J]. ACM Computing Surveys, 2021, 54 (2): 1- 38.
|
13 |
SINGH N K, RAZA K. Medical image generation using generative adversarial networks: a review[M]//PATGIRI R, BISWAS A, ROY P, ed. Health informatics: A Computational Perspective in Healthcare, 2021: 77-96.
|
14 |
PENG J , ZHOU Y Y , SUN X S , et al. Knowledge-driven ge-nerative adversarial network for text-to-image synthesis[J]. IEEE Trans.on Multimedia, 2021, 24, 4356- 4366.
|
15 |
ERPEK T , SAGDUYU Y E , SHI Y . Deep learning for launching and mitigating wireless jamming attacks[J]. IEEE Trans.on Cognitive Communications and Networking, 2018, 5 (1): 2- 14.
|
16 |
DAVASLIOGLU K, SAGDUYU Y E. Generative adversarial learning for spectrum sensing[C]//Proc. of the IEEE international Conference on Communications, 2018.
|
17 |
李蓉, 房安琪. 基于TransUnet的侵彻多层过载信号生成[J]. 测试技术学报, 2023, 37 (1): 43- 53.
doi: 10.3969/j.issn.1671-7449.2023.01.008
|
|
LI R , FANG A Q . Penetration multilayer oerload signal generation based on TansUnet[J]. Journal of Test and Measurement Technology, 2023, 37 (1): 43- 53.
doi: 10.3969/j.issn.1671-7449.2023.01.008
|
18 |
杨鸿杰, 陈丽, 张君毅. 基于生成对抗网络的数字信号生成技术研究[J]. 电子测量技术, 2020, 43 (20): 127- 132.
|
|
YANG H J , CHEN L , ZHANG J Y . Research on digital signal generation technology based on generative adversarial network[J]. Electronic Measurement Technology, 2020, 43 (20): 127- 132.
|
19 |
SHI Y , DAVASLIOGLU K , SAGDUYU Y E . Generative adversarial network in the air: deep adversarial learning for wireless signal spoofing[J]. IEEE Trans.on Cognitive Communications and Networking, 2020, 7 (1): 294- 303.
|
20 |
赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43 (4): 1080- 1088.
|
|
ZHAO F , JIN H . Communication jamming waveform generation technology based on GAN[J]. Systems Engineering and Electronics, 2021, 43 (4): 1080- 1088.
|
21 |
陈丽, 方梓涵, 梅立泉. 基于GAN的直扩信号生成算法[J]. 系统工程与电子技术, 2023, 45 (5): 1544- 1552.
|
|
CHEN L , FANG Z H , MEI L Q . DSS signal generation algorithm based on GANs[J]. Systems Engineering and Electro-nics, 2023, 45 (5): 1544- 1552.
|
22 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proc. of the International Conference on Machine Learning, 2017: 214-223.
|
23 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the 31st Conference on Neural Information Processing Systems, 2017.
|
24 |
梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14 (1): 1- 17.
|
|
LIANG J J , WEI J J , JIANG Z F . Generative adversarial networks GAN overview[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14 (1): 1- 17.
|
25 |
BERTHELOT D, SCHUMM T, METZ L. BEGAN: boundary equilibrium generative adversarial networks[EB/OL]. [2023-02-27]. https://arxiv.org/abs/1703.10717.
|
26 |
RUBNER Y , TOMASI C , GUIBAS L J . The earth mover's distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40, 99- 121.
doi: 10.1023/A:1026543900054
|
27 |
RUBINSTEIN R . The cross-entropy method for combinatorial and continuous optimization[J]. Methodology and Computing in Applied Probability, 1999, 1, 127- 190.
doi: 10.1023/A:1010091220143
|
28 |
HU D C. An introductory survey on attention mechanisms in NLP problems[C]//Proc. of the Intelligent Systems and Applications: Proceedings of the Intelligent Systems Conference, 2020: 432-448.
|
29 |
CHOI H , CHO K , BENGIO Y . Fine-grained attention mechanism for neural machine translation[J]. Neurocomputing, 2018, 284, 171- 176.
doi: 10.1016/j.neucom.2018.01.007
|
30 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015: 448-456.
|
31 |
眭惠巧. 对BPSK相干接收最佳干扰的研究[J]. 无线电通信技术, 2001, (6): 33- 34.
|
|
SUI H Q . Research on optimal jamming for coherent reception of BPSK[J]. Radio Communications Technology, 2001, (6): 33- 34.
|
32 |
秦伟, 王可人, 金虎, 等. 不同干扰对QSPK解调性能的影响分析[J]. 火力与指挥控制, 2017, 42 (4): 128- 132.
|
|
QIN W , WANG K R , JIN H , et al. Analysis on different jamming effects on QPSK demodulation performance[J]. Fire Control & Command Control, 2017, 42 (4): 128- 132.
|