1 |
谭怡. 航空维修企业成本管控问题浅析[J]. 中国市场, 2021, (31): 71- 72.
|
|
TAN Y . Analysis of cost control problems of aviation maintenance enterprises[J]. China Market, 2021, (31): 71- 72.
|
2 |
冯蕴雯, 陈俊宇, 刘佳奇, 等. 民用飞机航材预测与配置管理技术综述[J]. 航空工程进展, 2020, 11 (4): 443- 453.
|
|
FENG Y W , CHEN J Y , LIU J Q , et al. Review on the civil aircraft spare parts prediction and configuration management technology[J]. Advances in Aeronautical Science and Engineering, 2020, 11 (4): 443- 453.
|
3 |
孙绳山, 徐常凯, 何亚群. 基于RS-PSO-SVM的航材消耗预测模型[J]. 南京航空航天大学学报, 2021, 53 (6): 881- 887.
|
|
SUN S S , XU C K , HE Y Q . Prediction model of air material consumption based on RS-PSO-SVM[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53 (6): 881- 887.
|
4 |
李黄琪, 蔡开龙, 郝明, 等. 基于GRA-IPSO-SVM的航材携行需求预测研究[J]. 航空工程进展, 2022, (6): 166- 172.
|
|
LI H Q , CAI K L , HAO M , et al. Research on forecasting of aviation material carrying demand based on GRA-IPSO-SVM[J]. Advances in Aero Utical Science and Engineering, 2022, (6): 166- 172.
|
5 |
陈余胜, 徐贵强. 基于人工神经网络的后续航材需求预测研究[J]. 航空维修与工程, 2020, (11): 54- 57.
|
|
CHEN Y S , XU G Q . Research on demand forecast of followup aircraft material based on artificial neural network[J]. Aviation Maintenance & Engineering, 2020, (11): 54- 57.
|
6 |
王艳艳, 刘金波, 孙志红. 基于B样条神经网络的新机航材备件消耗预测[J]. 舰船电子工程, 2020, 40 (11): 125-127, 140.
|
|
WANG Y Y , LIU J B , SUN Z H . Study on consuming predication of new aircraft spare parts based on B-sable neural network[J]. Ship Electronic Engineering, 2020, 40 (11): 125-127, 140.
|
7 |
陈博, 徐常凯, 任佳成. 基于灰色神经网络的携行航材消耗预测[J]. 指挥信息系统与技术, 2018, 9 (5): 86- 90.
|
|
CHEN B , XU C K , REN J C . Consumption prediction of carried aviation material based on grey neural network[J]. Command Information System and Technology, 2018, 9 (5): 86- 90.
|
8 |
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial nets[J]. Communication of the ACM, 2020, 63 (11): 139- 144.
|
9 |
YI X , WALIA E , BABYN P . Generative adversarial network in medical imaging: a review[J]. Medical Image Analysis, 2019, 58, 101552.
|
10 |
ZHU G X, ZHAO H B, LIU H Q, et al. A novel LSTM-GAN algorithm for time series anomaly detection[C]//Proc. of the Prognostics and System Health Management Conference, 2019.
|
11 |
MOGREN O. Continuous recurrent neural networks with adversarial training[EB/OL]. [2022-06-20]. https://arxiv.org/abs/1611.09904.
|
12 |
RONALD J W , DAVID Z . A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1 (2): 270- 280.
|
13 |
SHOTA H, HIDEAKI H, SEⅡCHI U. Biosignal data augmentation based on generative adversarial networks[C]//Proc. of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2018: 368-371.
|
14 |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. [2022-06-20]. https://arxiv.org/abs/1411.1784.
|
15 |
GRAVES A. Generating sequences with recurrent neural networks[EB/OL]. [2022-06-20]. https://arxiv.org/abs/1308.0850.
|
16 |
赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43 (4): 1080- 1088.
|
|
ZHAO F , JIN H . Communication jamming waveform generation technology based on GAN[J]. Systems Engineering and Electronics, 2021, 43 (4): 1080- 1088.
|
17 |
MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[J]. [2022-06-20]. https://arxiv.org/abs/1511.05644.
|
18 |
SCHUSTER M , PALIWAL K K . Bidirectional recurrent neural networks[J]. IEEE Trans. on Signal Processing, 1997, 45 (11): 2673- 2681.
|
19 |
HSU W N, ZHANG Y, JAMES G. Unsupervised learning of disentangled and interpretable representations from sequential data[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 1878-1889.
|
20 |
张恩琪, 顾广华, 赵晨, 等. 生成对抗网络GAN的研究进展[J]. 计算机应用研究, 2021, 38 (4): 968- 974.
|
|
ZHANG E Q , GU G H , ZHAO C , et al. Research progress on generative adversarial network[J]. Application Research of Computers, 2021, 38 (4): 968- 974.
|
21 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2022-06-20]. https://arxiv.org/abs/1412.6980.
|
22 |
CHUNG J Y, GULCEHRE C, CHO K, et al. Gated feedback recurrent neural networks[C]//Proc. of the International Conference on Machine Learning, 2015: 2067-2075.
|
23 |
闫保中, 苏邓军. 基于GAN网络的时间序列预测算法[J]. 应用科技, 2022, 49 (2): 114-118, 126.
|
|
YAN B Z , SU D J . A time series prediction algorithm based on GAN network[J]. Applied Science and Technology, 2022, 49 (2): 114-118, 126.
|
24 |
LAURENS V D M , GEOFFREY H . Visualizing data using t-sne[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605.
|
25 |
ESTEBAN C, HYLAND S L, RATSCH G. Real-valued (medical) time series generation with recurrent conditional GANS[EB/OL]. [2022-06-20]. https://arxiv.org/abs/1706.02633.
|