1 |
杨瑞红. 卫星轨道预报的快速算法研究[D]. 西安: 西安理工大学, 2017.
|
|
YANG R H. Research on the fast algorithm of satellite orbit prediction[D]. Xi'an: Xi'an University of Technology, 2017.
|
2 |
MONTENBRUCK O . Numerical integration methods for orbital motion[J]. Celestial Mechanics and Dynamical Astronomy, 1992, 53 (1): 59- 69.
|
3 |
KIM H K , HAN C Y . Analytical and numerical approaches of a solar array thermal analysis in a low-earth orbit satellite[J]. Advances in Space Research, 2010, 46 (11): 1427- 1439.
doi: 10.1016/j.asr.2010.08.023
|
4 |
王海红, 陈忠贵, 初海彬, 等. 导航卫星星载自主轨道预报技术[J]. 宇航学报, 2012, 33 (8): 1019- 1026.
doi: 10.3873/j.issn.1000-1328.2012.08.004
|
|
WANG H H , CHEN Z G , CHU H B , et al. Autonomous orbit prediction technology for navigation satellites on board[J]. Acta Astronautics, 2012, 33 (8): 1019- 1026.
doi: 10.3873/j.issn.1000-1328.2012.08.004
|
5 |
PENG H , BAI X L . Artificial neural network-based machine learning approach to improve orbit prediction accuracy[J]. Journal of Spacecraft and Rockets, 2018, 55 (5): 1248- 1260.
doi: 10.2514/1.A34171
|
6 |
PENG H , BAI X L . Improving orbit prediction accuracy through supervised machine learning[J]. Advances in Space Research, 2018, 61 (10): 2628- 2646.
doi: 10.1016/j.asr.2018.03.001
|
7 |
PENG H , BAI X L . Exploring capability of support vector machine for improving satellite orbit prediction accuracy[J]. Journal of Aerospace Information Systems, 2018, 15 (6): 366- 381.
doi: 10.2514/1.I010616
|
8 |
PENG H, BAI X L. Obtain confidence interval for the machine learning approach to improve orbit prediction accuracy[C]// Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2018.
|
9 |
PENG H , BAI X L . Gaussian processes for improving orbit prediction accuracy[J]. Acta Astronautica, 2019, 161 (8): 44- 56.
|
10 |
PENG H , BAI X L . Comparative evaluation of three machine learning algorithms on improving orbit prediction accuracy[J]. Astrodynamics, 2019, 3 (4): 325- 343.
doi: 10.1007/s42064-018-0055-4
|
11 |
PENG H, BAI X L. Limits of machine learning approach on improving orbit prediction accuracy using support vector machine[C]//Proc. of the Advanced Maui Optical and Space Surveillance Techno-logies Conference, 2017.
|
12 |
LI B , HUANG J , FENG Y M , et al. A machine learning-based approach for improved orbit predictions of LEO space debris with sparse tracking data from a single station[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (6): 4253- 4268.
doi: 10.1109/TAES.2020.2989067
|
13 |
李晓杰, 潘玲, 郭睿, 等. 基于补偿波形调整的导航卫星轨道预报方法[J]. 武汉大学学报(信息科学版), 2017, 42 (8): 1061- 1067.
|
|
LI X J , PAN L , GUO R , et al. Navigation satellite orbit prediction method based on compensation waveform adjustment[J]. Journal of Wuhan University (Information Science Edition), 2017, 42 (8): 1061- 1067.
|
14 |
曹磊. 基于深度神经网络补偿模型的轨道预报技术[D]. 南京: 南京航空航天大学, 2014.
|
|
CAO L. Orbit prediction technology based on deep neural network compensation model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
|
15 |
杨先睿. 基于深度学习的卫星轨道预报算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
YANG X R. Research on satellite orbit prediction algorithm based on deep learning[D]. Harbin: Harbin Institute of Technology, 2019.
|
16 |
朱俊鹏, 赵洪利, 杜鑫, 等. 长短时记忆神经网络在卫星轨道预报中的研究[J]. 兵器装备工程学报, 2017, 38 (10): 127- 132.
doi: 10.11809/scbgxb2017.10.026
|
|
ZHU J P , ZHAO H L , DU X , et al. Research on long and short-term memory neural network in satellite orbit prediction[J]. Chinese Journal of Ordnance Equipment Engineering, 2017, 38 (10): 127- 132.
doi: 10.11809/scbgxb2017.10.026
|
17 |
刁宁辉, 刘建强, 孙从容, 等. 基于SGP4模型的卫星轨道计算[J]. 遥感信息, 2012, 27 (4): 64- 70.
doi: 10.3969/j.issn.1000-3177.2012.04.011
|
|
DIAO N H , LIU J Q , SUN C R , et al. Satellite orbit calculation based on SGP4 model[J]. Remote Sensing Information, 2012, 27 (4): 64- 70.
doi: 10.3969/j.issn.1000-3177.2012.04.011
|
18 |
MORSELLI A , ARMELLIN R , DI LIZIA P , et al. A high order method for orbital conjunctions analysis: sensitivity to initial uncertainties[J]. Advances in space Research, 2014, 53 (3): 490- 508.
doi: 10.1016/j.asr.2013.11.038
|
19 |
韦栋, 赵长印. SGP4/SDP4模型精度分析[J]. 天文学报, 2009, 50 (3): 332- 339.
doi: 10.3321/j.issn:0001-5245.2009.03.010
|
|
WEI D , ZHAO C Y . Accuracy analysis of SGP4/SDP4 model[J]. Acta Astronomica, 2009, 50 (3): 332- 339.
doi: 10.3321/j.issn:0001-5245.2009.03.010
|
20 |
XU X L , XIONG Y Q . Study on the orbit prediction errors of space objects based on historical TLE data-science direct[J]. Chinese Astronomy and Astrophysics, 2019, 43 (4): 563- 578.
doi: 10.1016/j.chinastron.2019.11.007
|
21 |
刘卫, 王荣兰, 刘四清, 等. TLE预报精度改进及碰撞预警中的应用[J]. 空间科学学报, 2014, 34 (4): 449- 459.
|
|
LIU W , WANG R L , LIU S Q , et al. Improvement of TLE forecast accuracy and its application in collision warning[J]. Journal of Space Science, 2014, 34 (4): 449- 459.
|
22 |
高兴龙, 陈钦, 李志辉, 等. 大型航天器无控飞行轨道衰降预报初步研究[J]. 飞行力学, 2020, (6): 70- 76.
|
|
GAO X L , CHEN Q , LI Z H , et al. Preliminary study on the prediction of uncontrolled flight orbit decline of large spacecraft[J]. Flight Dynamics, 2020, (6): 70- 76.
|
23 |
VALLADO D, CRAWFORD P, HUJSAK R, et al. Revisiting spacetrack report #3[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006.
|
24 |
LEE B S , PARK J W . Estimation of the SGP4 drag term from two osculating orbit states[J]. Journal of Astronomy & Space Sciences, 2003, 20 (1): 11- 20.
|
25 |
许晓丽, 熊永清. 双行根数编目体系轨道误差研究[J]. 天文学报, 2018, 59 (3): 31- 38.
|
|
XU X L , XIONG Y Q . Study on the orbit error of the double-row root number cataloging system[J]. Acta Astronomica, 2018, 59 (3): 31- 38.
|
26 |
SANG J , BENNETT J C . Achievable debris orbit prediction accuracy using laser ranging data from a single station[J]. Advances in Space Research, 2014, 54 (1): 119- 124.
doi: 10.1016/j.asr.2014.03.012
|
27 |
陈国平, 何冰, 张志斌, 等. CPF星历精度分析[J]. 中国科学院上海天文台年刊, 2010, (1): 35- 44.
|
|
CHEN G P , HE B , ZHANG Z B , et al. Accuracy analysis of CPF ephemeris[J]. Annual of Shanghai Observatory Academica sinica, 2010, (1): 35- 44.
|
28 |
HOCHREITERS , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
29 |
GRAVES A , SCHMIDHUBER J . Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18 (5-6): 602- 610.
doi: 10.1016/j.neunet.2005.06.042
|
30 |
BENGIO Y , SIMARD P , FRASCONI P . Learning long-term dependencies with gradient descent is difficult[J]. IEEE Trans.on Neural Networks, 1994, 5 (2): 157- 166.
doi: 10.1109/72.279181
|