系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 939-947.doi: 10.12305/j.issn.1001-506X.2022.03.26

• 制导、导航与控制 • 上一篇    下一篇

基于LSTM神经网络的短期轨道预报

张心宇1,2, 刘源1,2,*, 宋佳凝1,2   

  1. 1. 中山大学天琴中心, 广东 珠海 519082
    2. 中山大学物理与天文学院, 广东 珠海 519082
  • 收稿日期:2020-12-01 出版日期:2022-03-01 发布日期:2022-03-10
  • 通讯作者: 刘源
  • 作者简介:张心宇 (1996—), 男, 硕士研究生, 主要研究方向为应用机器学习、卫星轨道预报的研究|刘源 (1984—), 男, 副教授, 博士, 主要研究方向为轨道预报与先进推力航天器轨道设计、卫星最优控制、任务规划系统|宋佳凝 (1992—), 女, 副研究员, 博士后, 主要研究方向为自主导航滤波与脉冲星导航
  • 基金资助:
    中山大学中央高校基本科研业务费专项资金(19lgpy280)

Short-term orbit prediction based on LSTM neural network

Xinyu ZHANG1,2, Yuan LIU1,2,*, Jianing SONG1,2   

  1. 1. TianQin Research Center for Gravitational Physics, SunYat-sen University, Zhuhai 519082, China
    2. School of Physics and Astronomy, SunYat-sen University, Zhuhai 519082, China
  • Received:2020-12-01 Online:2022-03-01 Published:2022-03-10
  • Contact: Yuan LIU

摘要:

针对基于动力学模型的轨道预报方法对卫星自主轨道预报与大量非合作目标轨道预报中存在建模成本过高和缺少目标空间环境信息的问题, 提出一种基于误差数据驱动的神经网络轨道预报方法。该方法在解析法动力学模型的基础上, 使用长短期记忆神经网络对历史轨道预报的误差进行学习, 预测未来短期动力学模型的预报误差, 以此对预报结果进行修正。选用Ajisai卫星轨道数据和SGP4(simplified general perturbations)动力学模型对所提模型的有效性和性能进行仿真验证。实验结果表明, 所提方法对地心惯性坐标系下3个轴一天的预报误差分别下降到原来的16.87%、17.66%、19.58%, 显著提升了轨道预报精度。

关键词: 卫星轨道预报, 机器学习, 长短期记忆神经网络, 时间序列分析

Abstract:

Aiming at the problems of high modeling cost and lack of target space environment information in satellite autonomous orbit prediction and a large number of non cooperative target orbit prediction based on dynamic model, a neural network orbit prediction method driven by error data is proposed. Based on the analytical dynamic model, this method uses the long short-term memory neural network to learn the error of historical orbit prediction and predict the prediction error of future short-term dynamic model, so as to correct the prediction results. The ajisai satellite orbit data and SGP4 (simplified general pertubations) dynamic model are selected to verify the effectiveness and performance of the proposed model. The experimental results show that the one-day prediction errors of the three axes in the geocentric inertial coordinate system are reduced to 16.87%, 17.66% and 19.58% respectively, which significantly improves the orbit prediction accuracy.

Key words: satellite orbit forecast, machine learning, long short-term memory (LSTM) neural network, time series analysis

中图分类号: