1 |
CHEN J Q , GE X H , NI Q . Coverage and Handoff analysis of 5G fractal small cell networks[J]. IEEE Trans.on Wireless Communications, 2019, 18 (2): 1263- 1276.
doi: 10.1109/TWC.2018.2890662
|
2 |
陈中康. 基于深度学习的高铁移动通信信道预测和信号检测研究[D]. 南京: 南京邮电大学, 2020.
|
|
CHEN Z K. Research on deep learning-based channel prediction and signal detection in high-speed rail mobile communication scenarios[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
|
3 |
WEI J , HANS D S . Deep learning for fading channel prediction[J]. IEEE Open Journal of the Communications Society, 2020, 1, 320- 332.
doi: 10.1109/OJCOMS.2020.2982513
|
4 |
SHARMA P , CHANDRA K . Prediction of state transitions in Rayleigh fading channels[J]. IEEE Trans.on Vehicular Technology, 2007, 56 (2): 416- 425.
doi: 10.1109/TVT.2007.891421
|
5 |
DONG Z X, ZHAO Y S, CHEN Z H. Support vector machine for channel prediction in high-speed railway communication systems[C]//Proc. of the IEEE MTT-S International Wireless Symposium, 2018.
|
6 |
TANG Q, LONG H, YANG H J, et al. An enhanced LMMSE channel estimation under high speed railway scenarios[C]//Proc. of the IEEE International Conference on Communications Workshops, 2017: 999-1004.
|
7 |
LIAO R F , WEN H , WU J S , et al. The Rayleigh fading channel prediction via deep learning[J]. Wireless Communications and Mobile Computing, 2018,
doi: 10.1155/2018/6497340
|
8 |
WEI J, HANS D S. Recurrent neural networks with long short-term memory for fading channel prediction[C]//Proc. of the IEEE 91st Vehicular Technology Conference, 2020.
|
9 |
WEI J, HANS D S. A deep learning method to predict fading channel in multi-antenna systems[C]//Proc. of the IEEE 91st Vehicular Technology Conference, 2020.
|
10 |
YANG J, LI L, ZHAO M J. A blind CSI prediction method based on deep learning for V2I millimeter-wave channel[C]//Proc. of the IEEE 28th International Conference on Network Protocols, 2020.
|
11 |
LIU G Q , XU Y , HE Z J , et al. Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles[J]. IEEE Access, 2019, 7, 114487- 114495.
doi: 10.1109/ACCESS.2019.2935463
|
12 |
KIM H , KIM S , LEE H , et al. Massive MIMO channel prediction: Kalman filtering Vs. machine learning[J]. IEEE Trans.on Communications, 2021, 69 (1): 518- 528.
doi: 10.1109/TCOMM.2020.3027882
|
13 |
ZHNG Y X , ZHANG J H , YU L . Cluster-based fast time-varying MIMO channel fading prediction in the high-speed scenario[J]. IEEE Access, 2019, 7, 148692- 148705.
doi: 10.1109/ACCESS.2019.2946881
|
14 |
MA L, XIAO F, LI M Y. Research on time-varying sparse channel prediction algorithm in underwater acoustic channels[C]//Proc. of the 3rd International Conference on Electronic Information Technology and Computer Engineering, 2019: 2014-2018.
|
15 |
LIAO Y, SUN G D, SHEN X F, et al. BEM-based channel estimation and interpolation methods for doubly-selective OFDM channel[C]//Proc. of the IEEE International Conference on Smart Internet of Things, 2018: 70-75.
|
16 |
SON W S, HAN D S. Analysis on the channel prediction accuracy of deep learning-based approach[C]//Proc. of the International Conference on Artificial Intelligence in Information and Communication, 2021: 140-143.
|
17 |
MADHUBABU, THAKRE A. Long-short term memory based channel prediction for SISO system[C]//Proc. of the International Conference on Communication and Electronics Systems, 2019.
|
18 |
JOO J , PARK M C , HAN D S , et al. Deep learning-based channel prediction in realistic vehicular communications[J]. IEEE Access, 2019, 7, 27846- 27858.
doi: 10.1109/ACCESS.2019.2901710
|
19 |
RAMAKRISHNA S, PRIYATAMKUMAR. A comprehensive study of modeling doubly selective channel using basis expansion techniques[C]//Proc. of the International Conference on Wireless Communications, Signal Processing and Networking, 2016: 1822-1824.
|
20 |
WANG Y, WANG X Y, LONG K. Fast-varying channel estimation method based on basis expansion models in IEEE 802.16e systems[C]//Proc. of the 5th International Conference on Bio Medical Engineering and Informatics, 2012: 1462-1466.
|
21 |
程露. 基于未来高速移动场景的OFDMA系统中时变信道估计方法研究[D]. 南京: 南京邮电大学, 2020.
|
|
CHENG L. Research on time-varying channel estimation method in OFDMA system for future high-speed mobile scenarios[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
|
22 |
WANG X Y, WANG G P, SUN J, et al. Channel estimation with new basis expansion model for wireless communications on high speed railways[C]//Proc. of the IEEE 83rd Vehicular Technology Conference, 2016.
|
23 |
WANG X Y , WANG G P , FAN R F , et al. Channel estimation with expectation maximization and historical information based basis expansion model for wireless communication systems on high speed railway[J]. IEEE Access, 2018, 6, 72- 80.
doi: 10.1109/ACCESS.2017.2745708
|
24 |
SHENG Z C, FANG Y, WANG C. A BEM method of channel estimation for OFDM systems in high-speed train environment[C]//Proc. of the International Workshop on High Mobility Wireless Communications, 2013: 6-9.
|
25 |
黄锦锦. 基于基扩展模型的高移动性信道估计算法研究[D]. 福州: 福州大学, 2018.
|
|
HUANG J J. Research on high mobility channel estimation algorithm based on basis expansion model[D]. Fuzhou: Fuzhou University, 2018.
|
26 |
CAREEM M A A , DUTTA A . Real-time prediction of non-stationary wireless channels[J]. IEEE Trans.on Wireless Communications, 2020, 19 (20): 7836- 7850.
|
27 |
SASAKI, KUNO N, NAKAHIRA T, et al. Deep learning based channel prediction at 2-26 GHz band using long short-term memory network[C]//Proc. of the 15th European Confe-rence on Antennas and Propagation, 2021.
|
28 |
YUAN J , NGO H Q , MATTHAIOU M . Machine learning-based channel prediction in massive MIMO with channel aging[J]. IEEE Trans.on Wireless Communications, 2020, 19 (5): 2960- 2973.
doi: 10.1109/TWC.2020.2969627
|
29 |
LEMAYIAN J P, HAMAMREH J M. Recurrent neural network-based channel prediction in mMIMO for enhanced performance in future wireless communication[C]//Proc. of the International Conference on UK-China Emerging Technologies, 2020.
|
30 |
赵四方, 马启原, 李铁楠. 基于LSTM网络的短波天波信道分析及预测[J]. 舰船电子工程, 2019, 39 (12): 65- 70.
|
|
ZHAO S F , MA Q Y , LI T N . Analysis and prediction of sky wave channel based on LSTM network[J]. Ship Electronic Engineering, 2019, 39 (12): 65- 70.
|