1 |
WANG Q S , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076
|
2 |
孙艺聪, 田润澜, 王晓峰, 等. 基于改进CLDNN的辐射源信号识别[J]. 系统工程与电子技术, 2021, 43 (1): 42- 47.
|
|
SUN Y C , TIAN R L , WANG X F , et al. Radiation source signal recognition based on improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43 (1): 42- 47.
|
3 |
朱志宇, 张冰, 王建华. 灰关联分析和证据理论在雷达辐射源识别中的应用及改进[J]. 电光与控制, 2007, 14 (1): 34- 37.
doi: 10.3969/j.issn.1671-637X.2007.01.010
|
|
ZHU Z Y , ZHANG B , WANG J H . Application and improvement of Grey correlation analysis and evidence theory in radar source identification[J]. Electronics Optics and Control, 2007, 14 (1): 34- 37.
doi: 10.3969/j.issn.1671-637X.2007.01.010
|
4 |
朱志宇. 基于模糊推理的雷达辐射源识别方法[J]. 火力与指挥控制, 2009, 34 (4): 95- 99.
doi: 10.3969/j.issn.1002-0640.2009.04.027
|
|
ZHU Z Y . A method of radar source identification based on fuzzy inference[J]. Fire Control and Command Control, 2009, 34 (4): 95- 99.
doi: 10.3969/j.issn.1002-0640.2009.04.027
|
5 |
WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, 2019, 5470974.
|
6 |
杜盈, 何瑞珠. 基于深度学习的电磁辐射源识别技术[J]. 通讯世界, 2020, 27 (7): 75- 76.
|
|
DU Y , HE R Z . Electromagnetic radiation source identification technology based on deep learning[J]. Telecom World, 2020, 27 (7): 75- 76.
|
7 |
李昆, 朱卫纲. 一种深度学习的雷达辐射源识别方法[J]. 电子设计工程, 2020, 28 (12): 99- 104.
|
|
LI K , ZHU W G . A deep learning radar radiation source identification method[J]. Electronic Design Engineering, 2020, 28 (12): 99- 104.
|
8 |
BUKHARI D , WANG Y T , WANG H . Multilingual convolutional, long short-term memory, deep neural networks for low resource speech recognition[J]. Procedia Computer Science, 2017, 107, 842- 847.
doi: 10.1016/j.procs.2017.03.179
|
9 |
MIAO Y L, JI Y C, PENG E L. Application of CNN-BiGRU model in chinese short text sentiment analysis[C]//Proc. of the International Association of Applied Science and Engineering, 2019: 510-514.
|
10 |
LIU Z D , ZHOU W G , LI H Q . AB-LSTM: attention-based bidrectional LSTM model for scene text detection[J]. ACM Trans.on Multimedia Computing Communications, and Applications, 2019, 15 (4): 107.
|
11 |
SAINATH T N, WEISS R, WILSON K W. Learning the speech front end with raw waveform CLDNNs[C]//Proc. of the Conference of the International Speech Communication Association, 2015.
|
12 |
DINKEL H, CHEN N, QIAN Y, et al. End-to-end spoofing detection with raw waveform CLDNNS[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 4860-4864.
|
13 |
VISHAL P , RAJESH K A . Convolutional support vector machines for speech recogniton[J]. International Journal of Speech Technology, 2019, 22 (3): 601- 609.
doi: 10.1007/s10772-018-09584-4
|
14 |
VIMINA E R , JACOB K P . Feature fusion method using BoVW framework for enhancing image retrieval[J]. IET Image Processing, 2019, 13 (11): 1979- 1985.
doi: 10.1049/iet-ipr.2018.5381
|
15 |
HOU S D , SUN Q S . An orthogonal regularized CCA learning algorithm for feature fusion[J]. Journal of Visual Communication and Image Representation, 2014, 25 (5): 785- 792.
doi: 10.1016/j.jvcir.2014.01.009
|
16 |
LI J , JIN K , ZHOU D L , et al. Attention mechanism-based CNN for facial expression recognition[J]. Neurocomputing, 2020, 411, 340- 350.
doi: 10.1016/j.neucom.2020.06.014
|
17 |
XU H F , CHAI L , LUO Z M , et al. Stock movement predictive network via incorporative attention mechanisms based on tweet and historical prices[J]. Neurocomputing, 2020, 418, 326- 339.
doi: 10.1016/j.neucom.2020.07.108
|
18 |
LEI Y T , DU W W , HU Q H . Face sketch-to-photo transformation with multi-scale self-attention GAN[J]. Neurocomputing, 2020, 396, 13- 23.
doi: 10.1016/j.neucom.2020.02.024
|
19 |
GAO L L , WANG X H , SONG J K , et al. Fused GRU with semantic-temporal attention for video captioning[J]. Neurocomputing, 2020, 395, 222- 228.
doi: 10.1016/j.neucom.2018.06.096
|
20 |
XU X , WANG W , WANG J H . A three-way incremental-learning algorithm for radar emitter identification[J]. Frontiers of Computer Science, 2016, 10 (4): 673- 688.
doi: 10.1007/s11704-015-4457-7
|
21 |
CHEN C X , HE M H , LI H F . An improved radar emitter recognition method based on dezert-smarandache theory[J]. Chinese Journal of Electronics, 2015, 24 (3): 611- 615.
doi: 10.1049/cje.2015.07.029
|
22 |
ZHANG W B , JI H B , LIAO G S , et al. A novel extreme learning machine using privileged information[J]. Neurocomputing, 2015, 168, 823- 828.
doi: 10.1016/j.neucom.2015.05.042
|
23 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5
|
24 |
CONG C , ZHANG H M . Invert-U-Net DNN segmentation model for MRI cardiac left ventricle segmentation[J]. The Journal of Engineering, 2018, 2018 (16): 1463- 1467.
doi: 10.1049/joe.2018.8302
|
25 |
LIU M , JIANG H J , HU C . Aperiodically intermittent strategy for finite-time synchronization of delayed neural networks[J]. Neurocomputing, 2018, 310, 1- 9.
doi: 10.1016/j.neucom.2018.04.009
|
26 |
WEI R , ZHANG X H , WANG J H , et al. The research of sleep staging based on single-lead electrocardiogram and deep neural network[J]. Biomedical Engineering Letters, 2018, 8, 87- 93.
|
27 |
ZHANG Y J , QIN N , HUANG D Q , et al. Fault diagnosis of high-speed train bogie based on deep neural network[J]. IFAC PapersOnLine, 2019, 52 (24): 135- 139.
|
28 |
GAO Z W , WANG J , WANG J Y , et al. Time-frequency analysis of the vortex motion in a cylindrical cyclone separator[J]. Chemical Engineering Journal, 2019, 373, 1120- 1131.
|
29 |
YAO F , CHEN G Y . Time-frequency analysis of impact echo signals of grouting defects in tunnels[J]. Russian Journal of Nondestructive Testing, 2019, 55 (8): 581- 595.
doi: 10.1134/S1061830919080102
|
30 |
YU G , WANG Z H , ZHAO P , et al. Local maximum synchrosqueezing transform: an energy-concentrated time-frequency analysis tool[J]. Mechanical Systems and Signal Processing, 2019, 117, 537- 552.
|
31 |
FU W H , HU Z , LI D . A sorting algorithm for multiple frequency hopping signals in complex electromagnetic environments[J]. Circuits, Systems, and Signal Processing, 2020, 39 (1): 245- 267.
|
32 |
ZHANG C H , HAN Y T , ZHANG P , et al. Research on modern radar emitter modelling technique under complex electromagnetic environment[J]. The Journal of Engineering, 2019, 2019 (20): 7134- 7138.
|
33 |
LIU C T , WU R J , HE Z X , et al. Modeling and analyzing interference signal in a complex electromagnetic environment[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016 (1): 1- 9.
doi: 10.1186/s13638-015-0498-8
|
34 |
GUAN L , LI Z , HAO B J , et al. Cognitive frequency hopping sequences[J]. Chinese Journal of Electronics, 2016, 25 (1): 185- 191.
|