| 1 | 谢瑜, 陈莹.  通道裁剪下的多特征组合目标跟踪算法[J]. 系统工程与电子技术, 2020, 42 (4): 764- 772. | 
																													
																						|  | XIE Y ,  CHEN Y .  Multi-feature combined target tracking algorithm based on channel clipping[J]. Systems Engineering and Electronics, 2020, 42 (4): 764- 772. | 
																													
																						| 2 | ZHU Y, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]// Proc. of the IEEE International Conference on Robotics and Automation, 2017: 3357-3364. | 
																													
																						| 3 | YU H F ,  LI G ,  ZHANG W Z , et al.  The unmanned aerial vehicle benchmark: object detection, tracking and baseline[J]. International Journal of Computer Vision, 2020, 128 (5): 1141- 1159. doi: 10.1007/s11263-019-01266-1
 | 
																													
																						| 4 | DUAN X, XIE S S, MENG Y Z, et al. Brain computer integration controlled unmanned vehicle for target reconnaissance[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2019: 35-39. | 
																													
																						| 5 | 张开华, 樊佳庆, 刘青山.  视觉目标跟踪十年研究进展[J]. 计算机科学, 2021, 48 (3): 40- 49. | 
																													
																						|  | ZHANG K H ,  FAN J Q ,  LIU Q S .  Advances on visual object tracking in past decade[J]. Computer Science, 2021, 48 (3): 40- 49. | 
																													
																						| 6 | 黄月平, 李小锋, 杨小冈, 等.  基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43 (8): 2051- 2065. | 
																													
																						|  | HUANG Y P ,  LI X F ,  YANG X G , et al.  New development of visual object tracking algorithm based on correlation filtering[J]. Systems Engineering and Electronics, 2021, 43 (8): 2051- 2065. | 
																													
																						| 7 | CHEN Z C, ZHONG B H, LI G, et al. Siamese box adaptive network for visual tracking[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6668-6677. | 
																													
																						| 8 | WU Y H, BLASCH E, CHEN G, et al. Multiple source data fusion via sparse representation for robust visual tracking[C]//Proc. of the 14th International Conference on Information Fusion, 2011. | 
																													
																						| 9 | LIU H Y ,  SUN F F .  Fusion tracking in color and infrared images using joint sparse representation[J]. Science China Information Sciences, 2012, 55 (3): 590- 599. doi: 10.1007/s11432-011-4536-9
 | 
																													
																						| 10 | LI C, ZHAO N N, LU Y F, et al. Weighted sparse representation regularized graph learning for RGB-T object tracking[C]// Proc. of the 25th ACM International Conference on Multimedia, 2017: 1856-1864. | 
																													
																						| 11 | LI C, ZHU C, HUANG Y P, et al. Cross-modal ranking with soft consistency and noisy labels for robust RGB-T tracking[C]// Proc. of the European Conference on Computer Vision, 2018: 808-823. | 
																													
																						| 12 | ZHANG X H, ZHANG X F, DU X, et al. Learning multi-domain convolutional network for RGB-T visual tracking[C]//Proc. of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2018. | 
																													
																						| 13 | NAM H, HAN B B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4293-4302. | 
																													
																						| 14 | LI C ,  CHENG H Y ,  HU S , et al.  Learning collaborative sparse representation for grayscale-thermal tracking[J]. IEEE Trans.on Image Processing, 2016, 25 (12): 5743- 5756. doi: 10.1109/TIP.2016.2614135
 | 
																													
																						| 15 | LAN X X, YE M, ZHANG S H, et al. Robust collaborative discriminative learning for RGB-infrared tracking[C]//Proc. of the AAAI Conference on Artificial Intelligence New Orleans, 2018. | 
																													
																						| 16 | ZHU Y F ,  LI C D ,  TANG J , et al.  Quality-aware feature aggregation network for robust RGB-T tracking[J]. IEEE Trans.on Intelligent Vehicles, 2020, 6 (1): 121- 130. | 
																													
																						| 17 | LI C P ,  LIANG X ,  LU Y H , et al.  RGB-T object tracking: benchmark and baseline[J]. Pattern Recognition, 2019, 96, 106977. doi: 10.1016/j.patcog.2019.106977
 | 
																													
																						| 18 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proc. of the 3rd International Conference on Learning Representations, 2015. | 
																													
																						| 19 | LI C P ,  WU X ,  ZHAO N S , et al.  Fusing two-stream convolutional neural networks for RGB-T object tracking[J]. Neurocomputing, 2018, 281, 78- 85. doi: 10.1016/j.neucom.2017.11.068
 | 
																													
																						| 20 | ZHENG Q ,  CHEN Y S .  Feature pyramid of bi-directional stepped concatenation for small object detection[J]. Multimedia Tools and Applications, 2021, 38 (4): 314- 322. doi: 10.1007/s11042-021-10718-1?utm_source=xmol
 | 
																													
																						| 21 | CHEN L C ,  PAPANDREOU G ,  KOKKINOS I , et al.  Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848. | 
																													
																						| 22 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2961-2969. | 
																													
																						| 23 | FU J, LIU J, TIAN H F, et al. Dual attention network for scene segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154. | 
																													
																						| 24 | JUNG I, SON J, BAEK M, et al. Real-time mdnet[C]//Proc. of the European Conference on Computer Vision, 2018: 83-98. | 
																													
																						| 25 | GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448. | 
																													
																						| 26 | LUKEZIC A, VOJIR T, CEHOVIN Z L, et al. Discriminative correlation filter with channel and spatial reliability[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6309-6318. | 
																													
																						| 27 | HENRIQUES J F ,  CASEIRO R ,  MARTINS P , et al.  High-speed tracking with kernelized correlation filters[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 37 (3): 583- 596. | 
																													
																						| 28 | ZHU Y Y, LI C, LUO B F, et al. Dense feature aggregation and pruning for RGB-T tracking[C]//Proc. of the 27th ACM International Conference on Multimedia, 2019: 465-472. | 
																													
																						| 29 | ZHANG Z, PENG H. Deeper and wider siamese networks for real-time visual tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4591-4600. | 
																													
																						| 30 | TU Z, LIN C, LI C, et al. M5L: multi-modal multi-margin metric learning for RGB-T tracking[EB/OL]. [2021-03-24]. https://arxiv.org/abs/2003.07650v1,2003.07650,2020. |