1 |
黄月平, 李小锋, 杨小冈, 等. 基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43 (8): 2051- 2065.
|
|
HUANG Y P , LI X F , YANG X G , et al. Advances in visual object tracking algorithm based on correlation filter[J]. Systems Engineering and Electronics, 2021, 43 (8): 2051- 2065.
|
2 |
谢瑜, 陈莹. 空间注意机制下的自适应目标跟踪[J]. 系统工程与电子技术, 2019, 41 (9): 1945- 1954.
|
|
XIE Y , CHEN Y . Adaptive object tracking based on spatial attention mechanism[J]. Systems Engineering and Electronics, 2019, 41 (9): 1945- 1954.
|
3 |
张红颖, 胡文博. 多特征融合的尺度自适应相关滤波跟踪算法[J]. 系统工程与电子技术, 2019, 41 (5): 951- 957.
|
|
ZHANG H Y , HU W B . Scale-adaptive correlation filter tracking based on multiple features[J]. Systems Engineering and Electronics, 2019, 41 (5): 951- 957.
|
4 |
周治国, 荆朝, 王秋伶, 等. 基于时空信息融合的无人艇水面目标检测跟踪[J]. 电子与信息学报, 2021, 43 (6): 1698- 1705.
|
|
ZHOU Z G , JING Z , WANG Q L , et al. Object detection and tracking of unmanned surface vehicles based on spatial-temporal information fusion[J]. Journal of Electronics and Information Technology, 2021, 43 (6): 1698- 1705.
|
5 |
陈丹, 姚伯羽. 运动模型引导的自适应核相关目标跟踪方法[J]. 电子学报, 2021, 49 (3): 550- 558.
|
|
CHEN D , YAO B Y . Adaptive response kernel correlation target tracking method guided by motion model[J]. Acta Electronica Sinica, 2021, 49 (3): 550- 558.
|
6 |
刘宗达, 董立泉, 赵跃进, 等. 视频中快速运动目标的自适应模型跟踪算法[J]. 光学学报, 2021, 41 (18): 1815001.
|
|
LIU Z D , DONG L Q , ZHAO Y J , et al. Adaptive model tracking algorithm for fast-moving targets in video[J]. Acta Optica Sinica, 2021, 41 (18): 1815001.
|
7 |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550.
|
8 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 37 (3): 583- 596.
|
9 |
LI F, TIAN C, ZUO W M, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4904-4913.
|
10 |
XU T Y , FENG Z H , WU X J , et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Trans.on Image Processing, 2019, 28 (11): 5596- 5609.
doi: 10.1109/TIP.2019.2919201
|
11 |
ZHU Z, WU W, ZOU W, et al. End-to-end flow correlation tracking with spatial-temporal attention[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 548-557.
|
12 |
DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 4310-4318.
|
13 |
DANELLJAN M, HAGER G, SHAHBAZ K F, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1430-1438.
|
14 |
MUELLER M, SMITH N, GHANEM B. Context-aware correlation filter tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1396-1404.
|
15 |
DAI K N, WANG D, LU H C, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4670-4679.
|
16 |
KIANI G H, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 1763-1771.
|
17 |
DANELLJAN M , HÄGER G , KHAN F S , et al. Discriminative scale space tracking[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 39 (8): 1561- 1575.
|
18 |
LI Y M, FU C H, DING F Q, et al. Autotrack: towards high-performance visual tracking for uav with automatic spatio-temporal regularization[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 11923-11932.
|
19 |
MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for uav tracking[C]//Proc. of the European Confe-rence on Computer Vision, 2016: 445-461.
|
20 |
DU D W, QI Y K, YU H Y, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]//Proc. of the European Conference on Computer Vision, 2018: 370-386.
|
21 |
WU Y , LIM J , YANG M H . Object tracking benchmark[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848.
doi: 10.1109/TPAMI.2014.2388226
|
22 |
XU T, FENG Z H, WU X J, et al. Joint group feature selection and discriminative filter learning for robust visual object tracking[C]//Proc. of the IEEE International Conference on Computer Vision, 2019: 7950-7960.
|
23 |
LUKEZIC A, VOJIR T, CEHOVIN Z L, et al. Discriminative correlation filter with channel and spatial reliability[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6309-6318.
|
24 |
BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1401-1409.
|
25 |
NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4293-4302.
|
26 |
SONG Y B, MA C, GONG L J, et al. Crest: convolutional residual learning for visual tracking[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2555-2564.
|
27 |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 850-865.
|
28 |
ZHANG J M, MA S G, SCLAROFF S. MEEM: robust tracking via multiple experts using entropy minimization[C]//Proc. of the European Conference on Computer Vision, 2014: 188-203.
|
29 |
KALAL Z , MIKOLAJCZYK K , MATAS J . Tracking-learning-detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2011, 34 (7): 1409- 1422.
|
30 |
DANELLJAN M, BHAT G, SHAHBAZ K F, et al. Efficient convolution operators for tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6638-6646.
|