

系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 401-409.doi: 10.12305/j.issn.1001-506X.2022.02.06
宋子壮*, 杨嘉伟, 张东方, 王诗强, 张硕
收稿日期:2021-04-01
									
				
									
				
									
				
											出版日期:2022-02-18
									
				
											发布日期:2022-02-24
									
			通讯作者:
					宋子壮
												作者简介:宋子壮(1995—), 男, 博士研究生, 主要研究方向为深度学习与红外目标跟踪|杨嘉伟(1963—), 男, 研究员, 博士研究生导师, 博士, 主要研究方向为空间信息传输与信息处理|张东方(1986—), 男, 高级工程师, 硕士, 主要研究方向为深度学习与智能系统设计|王诗强(1988—), 男, 工程师, 博士, 主要研究方向为机器视觉与多传感器信息融合|张硕(1994—), 男, 助理工程师, 硕士, 主要研究方向为先进红外成像技术与红外系统设计
				
							Zizhuang SONG*, Jiawei YANG, Dongfang ZHANG, Shiqiang WANG, Shuo ZHANG
Received:2021-04-01
									
				
									
				
									
				
											Online:2022-02-18
									
				
											Published:2022-02-24
									
			Contact:
					Zizhuang SONG   
												摘要:
本文提出一种改进的红外多类别多目标实时跟踪网络, 在确保跟踪精度的同时, 重新设计无锚框网络结构, 进一步降低网络的参数量与推理时间。通过优化目标特征向量, 进一步提高识别精度, 同时简化与改进跟踪流程。此外, 通过细化分析相关流程执行时间, 选用GPU与CPU分别执行最优运算, 提升跟踪整体运行速度。上述方法被应用于低空海面红外目标跟踪数据集中。结果表明, 在本文所提的综合评价指标下, 所设计的网络相较其他轻量级网络评分提高1.78, 且运行速度在NVIDIA Jetson Xavier NX中达到52.37 FPS, 满足边缘端实时运行需求。
中图分类号:
宋子壮, 杨嘉伟, 张东方, 王诗强, 张硕. 基于无锚框的红外多类别多目标实时跟踪网络[J]. 系统工程与电子技术, 2022, 44(2): 401-409.
Zizhuang SONG, Jiawei YANG, Dongfang ZHANG, Shiqiang WANG, Shuo ZHANG. Real-time infrared multi-class multi-target anchor-free tracking network[J]. Systems Engineering and Electronics, 2022, 44(2): 401-409.
 
												
												表2
基于RepVGG的跟踪网络与其他轻量级网络跟踪精度对比"
| 网络结构 | MOTA | IDs | IDF1 | MT | ML | Score | 
| ResNet18+DCN | 59.52 | 361 | 63.15 | 38/71 | 10/71 | 65.53 | 
| ResNet18+DFPN | 63.47 | 306 | 65.64 | 40/71 | 9/71 | 68.19 | 
| HRNet18 | 66.51 | 227 | 68.81 | 41/71 | 7/71 | 70.80 | 
| DLA34 | 67.18 | 221 | 69.26 | 42/71 | 7/71 | 71.43 | 
| RepVGG+DCN(Deploy) | 62.03 | 284 | 64.04 | 38/71 | 9/71 | 66.73 | 
| RepVGG+FFPN(Train) | 66.24 | 267 | 66.72 | 40/71 | 8/71 | 69.51 | 
| RepVGG+FFPN(Deploy) | 66.24 | 267 | 66.72 | 40/71 | 8/71 | 69.51 | 
| 1 | 王法胜, 鲁明羽, 赵清杰, 等. 粒子滤波算法[J]. 计算机学报, 2014, 37 (8): 1679- 1694. | 
| WANG F S , LU M Y , ZHAO Q J , et al. Particle filtering algorithm[J]. Chinese Journal of Computers, 2014, 37 (8): 1679- 1694. | |
| 2 | COLLINS R T. Mean-shift blob tracking through scale space[C]// Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. DOI: 10.1109/CVPR.2003.1211475. | 
| 3 | WELCH G, BISHOP G. An introduction to the Kalman filter[C]// Proc. of the ACM Special Interest Group on Computer Graphics and Interactive Techniques, 2001. | 
| 4 | BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550. | 
| 5 | HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]// Proc. of the European Conference on Computer Vision, 2012: 702-715. | 
| 6 | HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 37 (3): 583- 596. | 
| 7 | 杜若鹏, 张磊, 卢杨. 上下文感知相关滤波的红外目标跟踪改进算法[J]. 激光与红外, 2020, 50 (7): 839- 845. | 
| DU R P , ZHANG L , LU Y . Improved infrared target tracking algorithm based on context-aware correlation filter[J]. Laser & Infrared, 2020, 50 (7): 839- 845. | |
| 8 | DANELLJAN M, ROBINSON A, SHAHBAZ K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 472-488. | 
| 9 | 王承赟, 张龙杰, 李相民, 等. 基于改进的核相关滤波算法的红外目标跟踪[J]. 电光与控制, 2021, 28 (7): 9- 13. | 
| WANG C Y , ZHANG L J , LI X M , et al. Infrared target tracking based on improved kernel correlation filter algorithm[J]. Electronics Optics & Control, 2021, 28 (7): 9- 13. | |
| 10 | 宋国鹏. 基于孪生网络的单目标跟踪算法研究及其应用[D]. 北京: 北京交通大学, 2020. | 
| SONG G P. Research and application of single target tracking algorithm based on siamese network[D]. Beijing: Beijing Jiaotong University, 2020. | |
| 11 | 柳赟, 孙淑艳.  基于自适应模板更新的改进孪生卷积网络目标跟踪算法[J]. 计算机应用与软件, 2021, 38 (4): 145- 151, 230. doi: 10.3969/j.issn.1000-386x.2021.04.024 | 
| LIU Y ,  SUN S Y .  Object tracking algorithm based on improved siamese convolutional networks combined with adaptive template updating[J]. Computer Applications and Software, 2021, 38 (4): 145- 151, 230. doi: 10.3969/j.issn.1000-386x.2021.04.024 | |
| 12 | DANELLJAN M, BHAT G, SHAHBAZ K F, et al. Eco: efficient convolution operators for tracking[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2017: 6638-6646. | 
| 13 | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 850-865. | 
| 14 | LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980. | 
| 15 | ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//Proc. of the European Conference on Computer Vision, 2018: 101-117. | 
| 16 | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4282-4291. | 
| 17 | BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//Proc. of the IEEE International Conference on Image Processing, 2016: 3464-3468. | 
| 18 | WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 3645-3649. | 
| 19 | WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[C]// Proc. of the European Conference on Computer Vision, 2020: 107-122. | 
| 20 | ZHANG Y F , WANG C Y , WANG X G , et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. arXiv preprint, 2020, | 
| 21 | ZHOU X , WANG D . KRÄHENBVHL P. Objects as points[J]. arXiv preprint, 2019, arXiv, 1904.07850. | 
| 22 | 李震霄, 孙伟, 刘明明, 等. 交通监控场景中的车辆检测与跟踪算法研究[J]. 计算机工程与应用, 2021, 57 (8): 103- 111. | 
| LI Z X , SUN W , LIU M M , et al. Research on vehicle detection and tracking algorithms in traffic monitoring scenes[J]. Computer Engineering and Applications, 2021, 57 (8): 103- 111. | |
| 23 | 赵朵朵, 章坚武, 傅剑峰.  基于深度学习的实时人流统计方法研究[J]. 传感技术学报, 2020, 33 (8): 1161- 1168. doi: 10.3969/j.issn.1004-1699.2020.08.013 | 
| ZHAO D D ,  ZHANG J W ,  FU J F .  Research on real-time statistics of people flow based on deep learning[J]. Chinese Journal of Sensors and Actuators, 2020, 33 (8): 1161- 1168. doi: 10.3969/j.issn.1004-1699.2020.08.013 | |
| 24 | 张宏鸣, 汪润, 董佩杰, 等. 基于DeepSORT算法的肉牛多目标跟踪方法[J]. 农业机械学报, 2021, 52 (4): 248- 256. | 
| ZHANG H M , WANG R , DONG P J , et al. Beef cattle multi-target tracking based on DeepSORT algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (4): 248- 256. | |
| 25 | MILAN A , LEAL-TAIXÉ L , REID I , et al. MOT16: a benchmark for multi-object tracking[J]. arXiv preprint, 2016, arXiv, 1603.00831. | 
| 26 | DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742. | 
| 27 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. | 
| 28 | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint, 2014, arXiv, 1409.1556. | 
| 29 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. | 
| 30 | LUO H, GU Y, LIAO X, et al. Bag of tricks and a strong baseline for deep person re-identification[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019. | 
| 31 | KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7482-7491. | 
| [1] | 侯子林, 程婷, 彭瀚. 基于量测转换序贯滤波的GMPHD机动目标跟踪[J]. 系统工程与电子技术, 2022, 44(8): 2474-2482. | 
| [2] | 翟光, 王妍欣, 孙一勇. 基于低轨星网的多目标协同跟踪滤波技术[J]. 系统工程与电子技术, 2022, 44(6): 1957-1967. | 
| [3] | 赵晓枫, 徐叶斌, 吴飞, 牛家辉, 蔡伟, 张志利. 基于全局感知机制的地面红外目标检测方法[J]. 系统工程与电子技术, 2022, 44(5): 1461-1467. | 
| [4] | 辛怀声, 曹晨. 基于交互多模型的分组δ-广义标签多伯努利算法[J]. 系统工程与电子技术, 2022, 44(4): 1128-1138. | 
| [5] | 贾晓雅, 汪洪桥, 杨亚聃, 崔忠马, 熊斌. 基于YOLO框架的无锚框SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(12): 3703-3709. | 
| [6] | 施伟, 黄红蓝, 冯旸赫, 刘忠. 面向多类别分类问题的子抽样主动学习方法[J]. 系统工程与电子技术, 2021, 43(3): 700-708. | 
| [7] | 尹立凡, 张奕群, 王硕, 孙承钢. 直方图概率多假设跟踪方法技术综述[J]. 系统工程与电子技术, 2021, 43(11): 3118-3125. | 
| [8] | 李正杰, 谢军伟, 张浩为, 张昭建. 基于集中式MIMO雷达的功率带宽联合分配算法[J]. 系统工程与电子技术, 2020, 42(5): 1041-1049. | 
| [9] | 卢晓东, 崔涛, 王伟, 程承. 考虑配准时空误差的多目标标签多伯努利滤波[J]. 系统工程与电子技术, 2020, 42(4): 904-911. | 
| [10] | 彭华甫, 黄高明, 田威, 邱昊. 基于幅度信息的标签多伯努利滤波算法[J]. 系统工程与电子技术, 2018, 40(12): 2636-2641. | 
| [11] | 刘建业, 王华, 周晚萌. 基于GA-SA的低轨星座传感器资源调度算法[J]. 系统工程与电子技术, 2018, 40(11): 2476-. | 
| [12] | 宋喜玉, 郑娜娥, 高留洋. 多目标跟踪的分布式MIMO雷达有限阵元选取算法[J]. 系统工程与电子技术, 2017, 39(9): 1992-1997. | 
| [13] | 谷晓琳, 周石琳, 雷琳. 基于m-best数据关联和小轨迹关联多目标跟踪算法[J]. 系统工程与电子技术, 2017, 39(7): 1640-1646. | 
| [14] | 袁常顺, 王俊, 向洪, 孙进平. 基于VB近似的自适应δ-GLMB滤波算法[J]. 系统工程与电子技术, 2017, 39(2): 237-243. | 
| [15] | 宋喜玉, 郑娜娥, 孙扬. 多目标跟踪的分布式MIMO雷达最少阵元选取算法[J]. 系统工程与电子技术, 2017, 39(10): 2228-2233. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||