系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2148-2156.doi: 10.12305/j.issn.1001-506X.2022.07.10

• 传感器与信号处理 • 上一篇    下一篇

基于多级跳线残差网络的雷达辐射源识别

张立民, 谭凯文*, 闫文君, 张聿远   

  1. 海军航空大学航空作战勤务学院, 山东 烟台 264001
  • 收稿日期:2021-01-09 出版日期:2022-06-22 发布日期:2022-06-28
  • 通讯作者: 谭凯文
  • 作者简介:张立民 (1966—), 教授, 博士, 主要研究方向为卫星信号处理、武器系统仿真|谭凯文 (1998—), 男, 硕士研究生, 主要研究方向为雷达辐射源识别|闫文君 (1986—), 男, 副教授, 博士, 主要研究方向为空时分组码检测、基于深度学习的信号处理技术|张聿远 (1997—), 男, 硕士研究生, 主要研究方向为空时分组码识别技术
  • 基金资助:
    国家自然科学基金(91538201);泰山学者工程专项经费基金(ts201511020);信息系统安全技术重点实验室基金(6142111190404)

Radar emitter recognition based on multi-level jumper residual network

Limin ZHANG, Kaiwen TAN*, Wenjun YAN, Yuyuan ZHANG   

  1. School of Aviation Support, Naval Aviation University, Yantai 264001, China
  • Received:2021-01-09 Online:2022-06-22 Published:2022-06-28
  • Contact: Kaiwen TAN

摘要:

针对复杂体制雷达辐射源的识别问题, 提出了一种基于时频特征提取与多级跳线残差网络(multi-level jumper residual network, MLJ-RN)结合的识别方法。首先,计算辐射源信号的平滑伪Wigner-Ville时频分布生成时频图像以表达信号本质特征, 将图像进行预处理以保留信号细微特征差异。然后,设计多级跳线连接的残差单元, 在此基础上构造MLJ-RN, 对时频图像相邻卷积层的细微特征进行学习和识别, 并使用随机梯度下降法训练网络。最后,通过对网络进行参数优化, 强化对信号的深层特征提取能力。仿真结果表明, 信噪比为-5 dB时, 该方法对12类雷达辐射源信号的整体识别概率达到95.1%, 从而验证了该方法在低信噪比下识别雷达信号的有效性。

关键词: 时频特征, 辐射源识别, 深度学习, 多级跳线

Abstract:

Aiming at the problem of complex radar emitter recognition, a recognition method based on time-frequency feature extraction and multi-level jumper residual network (MLJ-RN) is proposed. Firstly, the smoothed pseudo Wigner-Ville distribution (SPWVD) of emitter signals is calculated, a time-frequency image is generated to express the essential characteristics of the signal, and the image is preprocessed to retain the subtle differences of the signal features. Then a residual unit connected by multi-level jumpers is designed, a multi-level jumper residual network is constructed on this basis, the fine features of the adjacent convolution layers of the time-frequency image are learned and recognized, and the random gradient descent method is used to train the residual network. Finally, through the adjustment of the network, the parameters of the network are optimized to enhance the deep feature extraction ability of the signal. The simulation results show that when the signal-to-noise ratio (SNR) is -5 dB, the overall recognition probability of the method for 12 types of radar emitter signals reaches 95.1%, which verifies the effectiveness of the method in identifying radar signals at low SNRs.

Key words: time frequency feature, emitter recognition, deep learning, multi-level jumper

中图分类号: