

系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2148-2156.doi: 10.12305/j.issn.1001-506X.2022.07.10
张立民, 谭凯文*, 闫文君, 张聿远
收稿日期:2021-01-09
									
				
									
				
									
				
											出版日期:2022-06-22
									
				
											发布日期:2022-06-28
									
			通讯作者:
					谭凯文
												作者简介:张立民 (1966—), 教授, 博士, 主要研究方向为卫星信号处理、武器系统仿真|谭凯文 (1998—), 男, 硕士研究生, 主要研究方向为雷达辐射源识别|闫文君 (1986—), 男, 副教授, 博士, 主要研究方向为空时分组码检测、基于深度学习的信号处理技术|张聿远 (1997—), 男, 硕士研究生, 主要研究方向为空时分组码识别技术
				
							基金资助:Limin ZHANG, Kaiwen TAN*, Wenjun YAN, Yuyuan ZHANG
Received:2021-01-09
									
				
									
				
									
				
											Online:2022-06-22
									
				
											Published:2022-06-28
									
			Contact:
					Kaiwen TAN   
												摘要:
针对复杂体制雷达辐射源的识别问题, 提出了一种基于时频特征提取与多级跳线残差网络(multi-level jumper residual network, MLJ-RN)结合的识别方法。首先,计算辐射源信号的平滑伪Wigner-Ville时频分布生成时频图像以表达信号本质特征, 将图像进行预处理以保留信号细微特征差异。然后,设计多级跳线连接的残差单元, 在此基础上构造MLJ-RN, 对时频图像相邻卷积层的细微特征进行学习和识别, 并使用随机梯度下降法训练网络。最后,通过对网络进行参数优化, 强化对信号的深层特征提取能力。仿真结果表明, 信噪比为-5 dB时, 该方法对12类雷达辐射源信号的整体识别概率达到95.1%, 从而验证了该方法在低信噪比下识别雷达信号的有效性。
中图分类号:
张立民, 谭凯文, 闫文君, 张聿远. 基于多级跳线残差网络的雷达辐射源识别[J]. 系统工程与电子技术, 2022, 44(7): 2148-2156.
Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network[J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156.
表1
信号模型"
| 调制方式 | 信号模型 | 参数 | 
| CW |   |  载频fc | 
| LFM |   |  带宽B | 
| BFSK |   |  载频f1, f2 | 
| QFSK |   |  载频fi | 
| P1码-P4码 |   |  载频fc | 
| 2ASK |   |  载频fc | 
| QPSK |   |  相位φm,n 载频fc  |  
| BPSK |   |  巴克码组Cn | 
| BPSK+LFM |   |  带宽B 巴克码组Cn  |  
表2
多相编码信号相位"
| 码型 | 相位φm,n | 
| P1 |   |  
| P2 |   |  
| P3 |   |  
| P4 |   |  
| QPSK |   |  
| 1 |  
											   WU L W ,  ZHAO Y Q ,  FENG M F , et al.  Specific emitter identification using IMF-DNA with a joint feature selection algorithm[J]. Electronics, 2019, 8 (9): 934. 
											 												 doi: 10.3390/electronics8090934  | 
										
| 2 | WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, (7): 1- 13. | 
| 3 | 周志文, 黄高明, 王雪宝, 等. 基于联合协作表示的特定辐射源识别[J]. 系统工程与电子技术, 2019, 41 (4): 724- 729. | 
| ZHOU Z W , HUANG G M , WANG X B , et al. Specific emitter recognition based on joint collaborative representation[J]. Systems Engineering and Electronics, 2019, 41 (4): 724- 729. | |
| 4 |  
											   FU W H ,  HU Z ,  LI D .  A sorting algorithm for multiple frequency-hopping signals in complex electromagnetic environments[J]. Circuits, Systems, and Signal Processing, 2020, 39 (1): 245- 267. 
											 												 doi: 10.1007/s00034-019-01160-8  | 
										
| 5 |  
											   HUANG S ,  CHAI L ,  LI Z N , et al.  Automatic modulation classification using compressive convolutional neural network[J]. IEEE Access, 2019, 7, 79636- 79643. 
											 												 doi: 10.1109/ACCESS.2019.2921988  | 
										
| 6 |  
											   LI R D ,  LI L Z ,  YANG S Y , et al.  Robust automated VHF modulation recognition based on deep convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (5): 946- 949. 
											 												 doi: 10.1109/LCOMM.2018.2809732  | 
										
| 7 |  
											   PENG S L ,  JIANG H Y ,  WANG H X , et al.  Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Trans.on Neural Networks and Learning System, 2019, 30 (3): 718- 727. 
											 												 doi: 10.1109/TNNLS.2018.2850703  | 
										
| 8 |  
											   KULIN M ,  KAZAZ T ,  MOERMAN I , et al.  End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6, 18484- 18501. 
											 												 doi: 10.1109/ACCESS.2018.2818794  | 
										
| 9 |  
											   KONG S H ,  KIM M ,  HOANG L M .  Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219. 
											 												 doi: 10.1109/ACCESS.2017.2788942  | 
										
| 10 |  
											   PENG S L ,  JIANG H Y ,  WANG H X , et al.  Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (3): 718- 727. 
											 												 doi: 10.1109/TNNLS.2018.2850703  | 
										
| 11 | KONG M X, ZHANG J, LIU W F, et al. Radar emitter identification based on deep convolutional neural network[C]//Proc. of the International Conference on Control, Automation and Information Sciences, 2018. | 
| 12 |  
											   ZHANG M ,  DIAO M ,  GUO L M .  Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082. 
											 												 doi: 10.1109/ACCESS.2017.2716191  | 
										
| 13 |  
											   ZHOU Z W ,  HUANG G M ,  WANG X B .  Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters[J]. ETRI Journal, 2019, 41 (6): 750- 759. 
											 												 doi: 10.4218/etrij.2017-0327  | 
										
| 14 | GAO J P , SHEN L X , GAO L P . Modulation recognition for radar emitter signals based on convolutional neural network and fusion features[J]. Transactions on Emerging Telecommunications Technologies, 2019, 30 (12): e3612. | 
| 15 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. | 
| 16 |  
											   CHEN P H ,  LIN C J ,  SCHLKOPF B .  A tutorial on ν-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21 (2): 111- 136. 
											 												 doi: 10.1002/asmb.537  | 
										
| 17 |  
											   CHEN K Y ,  ZHANG S N ,  ZHU L Z , et al.  Modulation recognition of radar signals based on adaptive singular value reconstruction and deep residual learning[J]. Sensors, 2021, 21 (2): 449. 
											 												 doi: 10.3390/s21020449  | 
										
| 18 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. | 
| 19 |  
											   WANG Y ,  WU X ,  LI W Z , et al.  Analysis of micro-Doppler signatures of vibration targets using EMD and SPWVD[J]. Neurocomputing, 2016, 171, 48- 56. 
											 												 doi: 10.1016/j.neucom.2015.06.005  | 
										
| 20 |  
											   YUAN Q Q ,  ZHANG Q ,  LI J , et al.  Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (2): 1205- 1218. 
											 												 doi: 10.1109/TGRS.2018.2865197  | 
										
| 21 | 孙伟峰, 戴永寿. 采用多级残差滤波的非局部均值图像去噪方法[J]. 电子与信息学报, 2016, 38 (8): 1999- 2006. | 
| SUN W F , DAI Y S . Non local mean image denoising method based on multistage residual filtering[J]. Journal of Electronics and Information Technology, 2016, 38 (8): 1999- 2006. | |
| 22 |  
											   ZHOU D W ,  SHEN X L ,  DONG W M .  Image zooming using directional cubic convolution interpolation[J]. IET Image Processing, 2012, 6 (6): 627- 634. 
											 												 doi: 10.1049/iet-ipr.2011.0534  | 
										
| 23 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-01-05]. https://arxiv.org/abs/1409.155. | 
| 24 |  
											   ALEX K ,  ILYA S ,  GEOFFREY E .  ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90. 
											 												 doi: 10.1145/3065386  | 
										
| 25 |  
											   HUANG H ,  PU C Y ,  LI Y , et al.  Adaptive residual convolutional neural network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2520- 2531. 
											 												 doi: 10.1109/JSTARS.2020.2995445  | 
										
| 26 |  
											   LEE S J ,  CHEN T L ,  YU L , et al.  Image classification based on the boost convolutional neural network[J]. IEEE Access, 2018, 6, 12755- 12768. 
											 												 doi: 10.1109/ACCESS.2018.2796722  | 
										
| 27 |  
											   PAN Y W ,  YANG S H ,  PENG H , et al.  Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434. 
											 												 doi: 10.1109/ACCESS.2019.2913759  | 
										
| 28 | WANG X B, HUANG G M, ZHOU Z W, et al. Radar emitter recognition based on the short time Fourier transform and convolutional neural networks[C]//Proc. of the 10th IEEE International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, 2017. | 
| 29 |  
											   WANG X B ,  HUANG G M ,  ZHOU Z W , et al.  Radar emitter recognition based on the energy cumulant of short time Fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18 (9): 3103. 
											 												 doi: 10.3390/s18093103  | 
										
| [1] | 韩啸, 陈世文, 陈蒙, 杨锦程. 基于互易点学习的LPI信号开集识别[J]. 系统工程与电子技术, 2022, 44(9): 2752-2759. | 
| [2] | 金国栋, 薛远亮, 谭力宁, 许剑锟. 基于孪生神经网络的目标跟踪算法进展研究[J]. 系统工程与电子技术, 2022, 44(6): 1805-1822. | 
| [3] | 赵晓枫, 徐叶斌, 吴飞, 牛家辉, 蔡伟, 张志利. 基于全局感知机制的地面红外目标检测方法[J]. 系统工程与电子技术, 2022, 44(5): 1461-1467. | 
| [4] | 邹虹, 白陈阳, 何鹏, 崔亚平, 王汝言, 吴大鹏. 基于分布式深度学习的边缘服务放置策略[J]. 系统工程与电子技术, 2022, 44(5): 1728-1737. | 
| [5] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. | 
| [6] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. | 
| [7] | 姚云翔, 陈莹. 注意力机制下双模态交互融合的目标跟踪网络[J]. 系统工程与电子技术, 2022, 44(2): 410-419. | 
| [8] | 高涌荇, 王旭东, 汪玲, 朱岱寅, 郭军, 孟凡旺. 基于RCNN的双极化气象雷达天气信号检测[J]. 系统工程与电子技术, 2022, 44(11): 3380-3387. | 
| [9] | 曲凌志, 杨俊安, 刘辉, 黄科举. 嵌入注意力机制的通信辐射源个体识别方法[J]. 系统工程与电子技术, 2022, 44(1): 20-27. | 
| [10] | 周毅恒, 杨军, 夏赛强, 吕明久. 闪烁现象下旋翼目标微动参数估计方法[J]. 系统工程与电子技术, 2022, 44(1): 54-63. | 
| [11] | 付蓉, 黄天耀, 刘一民. 基于深度学习的捷变相参雷达1-Bit块稀疏重构[J]. 系统工程与电子技术, 2022, 44(1): 70-75. | 
| [12] | 张聿远, 张立民, 闫文君. 基于互相关特征图和扩张稠密卷积网络的SFBC-OFDM识别方法[J]. 系统工程与电子技术, 2021, 43(9): 2657-2664. | 
| [13] | 王彩云, 李阳雨, 李晓飞, 王佳宁, 魏文怡. 基于稀疏性深度学习的航拍图像超分辨重构[J]. 系统工程与电子技术, 2021, 43(8): 2045-2050. | 
| [14] | 黄月平, 李小锋, 杨小冈, 齐乃新, 卢瑞涛, 张胜修. 基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43(8): 2051-2065. | 
| [15] | 王彬, 王国宇. 基于改进的深度学习网络的SAR图像瞬时海岸线自动提取算法[J]. 系统工程与电子技术, 2021, 43(8): 2108-2115. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||