1 |
WU L W , ZHAO Y Q , FENG M F , et al. Specific emitter identification using IMF-DNA with a joint feature selection algorithm[J]. Electronics, 2019, 8 (9): 934.
doi: 10.3390/electronics8090934
|
2 |
WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, (7): 1- 13.
|
3 |
周志文, 黄高明, 王雪宝, 等. 基于联合协作表示的特定辐射源识别[J]. 系统工程与电子技术, 2019, 41 (4): 724- 729.
|
|
ZHOU Z W , HUANG G M , WANG X B , et al. Specific emitter recognition based on joint collaborative representation[J]. Systems Engineering and Electronics, 2019, 41 (4): 724- 729.
|
4 |
FU W H , HU Z , LI D . A sorting algorithm for multiple frequency-hopping signals in complex electromagnetic environments[J]. Circuits, Systems, and Signal Processing, 2020, 39 (1): 245- 267.
doi: 10.1007/s00034-019-01160-8
|
5 |
HUANG S , CHAI L , LI Z N , et al. Automatic modulation classification using compressive convolutional neural network[J]. IEEE Access, 2019, 7, 79636- 79643.
doi: 10.1109/ACCESS.2019.2921988
|
6 |
LI R D , LI L Z , YANG S Y , et al. Robust automated VHF modulation recognition based on deep convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (5): 946- 949.
doi: 10.1109/LCOMM.2018.2809732
|
7 |
PENG S L , JIANG H Y , WANG H X , et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Trans.on Neural Networks and Learning System, 2019, 30 (3): 718- 727.
doi: 10.1109/TNNLS.2018.2850703
|
8 |
KULIN M , KAZAZ T , MOERMAN I , et al. End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6, 18484- 18501.
doi: 10.1109/ACCESS.2018.2818794
|
9 |
KONG S H , KIM M , HOANG L M . Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942
|
10 |
PENG S L , JIANG H Y , WANG H X , et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (3): 718- 727.
doi: 10.1109/TNNLS.2018.2850703
|
11 |
KONG M X, ZHANG J, LIU W F, et al. Radar emitter identification based on deep convolutional neural network[C]//Proc. of the International Conference on Control, Automation and Information Sciences, 2018.
|
12 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191
|
13 |
ZHOU Z W , HUANG G M , WANG X B . Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters[J]. ETRI Journal, 2019, 41 (6): 750- 759.
doi: 10.4218/etrij.2017-0327
|
14 |
GAO J P , SHEN L X , GAO L P . Modulation recognition for radar emitter signals based on convolutional neural network and fusion features[J]. Transactions on Emerging Telecommunications Technologies, 2019, 30 (12): e3612.
|
15 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
16 |
CHEN P H , LIN C J , SCHLKOPF B . A tutorial on ν-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21 (2): 111- 136.
doi: 10.1002/asmb.537
|
17 |
CHEN K Y , ZHANG S N , ZHU L Z , et al. Modulation recognition of radar signals based on adaptive singular value reconstruction and deep residual learning[J]. Sensors, 2021, 21 (2): 449.
doi: 10.3390/s21020449
|
18 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
19 |
WANG Y , WU X , LI W Z , et al. Analysis of micro-Doppler signatures of vibration targets using EMD and SPWVD[J]. Neurocomputing, 2016, 171, 48- 56.
doi: 10.1016/j.neucom.2015.06.005
|
20 |
YUAN Q Q , ZHANG Q , LI J , et al. Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (2): 1205- 1218.
doi: 10.1109/TGRS.2018.2865197
|
21 |
孙伟峰, 戴永寿. 采用多级残差滤波的非局部均值图像去噪方法[J]. 电子与信息学报, 2016, 38 (8): 1999- 2006.
|
|
SUN W F , DAI Y S . Non local mean image denoising method based on multistage residual filtering[J]. Journal of Electronics and Information Technology, 2016, 38 (8): 1999- 2006.
|
22 |
ZHOU D W , SHEN X L , DONG W M . Image zooming using directional cubic convolution interpolation[J]. IET Image Processing, 2012, 6 (6): 627- 634.
doi: 10.1049/iet-ipr.2011.0534
|
23 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-01-05]. https://arxiv.org/abs/1409.155.
|
24 |
ALEX K , ILYA S , GEOFFREY E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
25 |
HUANG H , PU C Y , LI Y , et al. Adaptive residual convolutional neural network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2520- 2531.
doi: 10.1109/JSTARS.2020.2995445
|
26 |
LEE S J , CHEN T L , YU L , et al. Image classification based on the boost convolutional neural network[J]. IEEE Access, 2018, 6, 12755- 12768.
doi: 10.1109/ACCESS.2018.2796722
|
27 |
PAN Y W , YANG S H , PENG H , et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759
|
28 |
WANG X B, HUANG G M, ZHOU Z W, et al. Radar emitter recognition based on the short time Fourier transform and convolutional neural networks[C]//Proc. of the 10th IEEE International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, 2017.
|
29 |
WANG X B , HUANG G M , ZHOU Z W , et al. Radar emitter recognition based on the energy cumulant of short time Fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18 (9): 3103.
doi: 10.3390/s18093103
|