| 1 | LIN C W, TIAN R, BAO Q B, et al. Coherent integration method of frequency agile radar for target detection[C]//Proc. of the 6th Asia-Pacific Conference on Antennas and Propagation, 2017. | 
																													
																						| 2 | XU W, HASSIBI B. Efficient compressive sensing with deterministic guarantees using expander graphs[C]//Proc. of the IEEE Information Theory Workshop, 2007: 414-419. | 
																													
																						| 3 | INDYK P. Sparse recovery using sparse random matrices[M]//Latin: Theoretical Informatics, 2010: 157-157, | 
																													
																						| 4 | ELDAR Y C ,  KUTYNIOK G .  Compressed sensing: theory and applications[M]. Cambridge: Cambridge University Press, 2012. | 
																													
																						| 5 | WANG L C ,  HUANG T ,  LIU Y H , et al.  Randomized stepped frequency radars exploiting block sparsity of extended targets: a theoretical analysis[J]. IEEE Trans.on Signal Processing, 2021, 382 (44): 1927- 1938. | 
																													
																						| 6 | PARK G ,  HONG S .  Construction of 1-bit transmit-signal vectors for downlink MU-MISO systems with PSK signaling[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (8): 8270- 8274. doi: 10.1109/TVT.2019.2926486
 | 
																													
																						| 7 | YANIV P ,  ROMAN V .  One-bit compressed sensing by linear programming[J]. Communications on Pure and Applied Mathematics, 2013, 66 (8): 1275- 1297. doi: 10.1002/cpa.21442
 | 
																													
																						| 8 | MEHRDAD Y, THOMAS B, DAVIES M. Quantized sparse approximation with iterative thresholding for audio coding[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1988. | 
																													
																						| 9 | JACQUES L ,  LASKA J N ,  BOUFOUNOS P T , et al.  Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors[J]. IEEE Trans.on Information Theory, 2013, 59 (4): 2082- 2102. doi: 10.1109/TIT.2012.2234823
 | 
																													
																						| 10 | BOUFOUNOS P T. Greedy sparse signal reconstruction from sign measurements[C]//Proc. of the asilomar Conference on Circuits, Systems and Computers, 1997. | 
																													
																						| 11 | LASKA J N ,  WEN Z ,  YIN W , et al.  Trust, but verify: fast and accurate signal recovery from 1-bit compressive measurements[J]. IEEE Trans.on Signal Processing, 2011, 59 (11): 5289- 5301. doi: 10.1109/TSP.2011.2162324
 | 
																													
																						| 12 | PLAN Y ,  VERSHYNIN R .  One-bit compressed sensing by linear programming[J]. Communications on Pure and Applied Mathematics, 2013, 22 (6): 272- 278. | 
																													
																						| 13 | GREGOR K, LECUN Y. Learning fast approximations of sparse coding[C]//Proc. of the International Conference on International Conference on Machine Learning, 2010: 399-406. | 
																													
																						| 14 | ZHANG J, GHANEM B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. | 
																													
																						| 15 | BORGERDING M ,  SCHNITER P ,  RANGAN S .  AMP-Inspired deep networks for sparse linear inverse problems[J]. IEEE Trans.on Signal Processing, 2017, 378 (40): 392- 398. | 
																													
																						| 16 | BORGERDING M, SCHNITER P, Onsager-corrected deep learning for sparse linear inverse problems[C]//Proc. of the IEEE Global Conference on Signal and Information Processing, 2016: 227-231. | 
																													
																						| 17 | FU R, HUANG T Y, LIU Y Y, et al. Compressed LISTA exploiting toeplitz structure[C]//Proc. of the IEEE Radar Confe-rence, 2019. | 
																													
																						| 18 | LIU J, CHEN X Z, WANG Z K, et al. ALISTA: analytic weights are as good as learned weights in lista[C]//Proc. of the International Conference on Learning Representations, 2019. | 
																													
																						| 19 | WU K, GUO Y, LI Z, et al. Sparse coding with gated learned ISTA[C]//Proc. of the International Conference on Learning Representations, 2020. | 
																													
																						| 20 | ELDAR Y C ,  KUPPINGER P ,  BOLCSKEI H .  Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Trans.on Signal Processing, 2010, 58 (6): 3042- 3054. doi: 10.1109/TSP.2010.2044837
 | 
																													
																						| 21 | BECK A ,  TEBOULLE M .  A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imaging Sciences, 2009, 2 (1): 183- 202. doi: 10.1137/080716542
 | 
																													
																						| 22 | DRAGANIC A ,  OROVIC I ,  STANKOVIC S .  On some common compressive sensing recovery algorithms and applications-review paper[J]. Facta Universitatis-Series: Electronics and Energetics, 2017, 38 (5): 2714- 2723. | 
																													
																						| 23 | AVIAD A, ALONA G, MICHAEL E. Ada-LISTA: learned solvers adaptive to varying models[EQ/BL]. [2021-05-04]https://www.researchgate.net/publication/338789854_Ada-LISTA_Learned_Solvers_Adaptive_to_Varying_Models. | 
																													
																						| 24 | BARANIUK R G ,  CEVHER V ,  DUARTE M F , et al.  Model-based compressive sensing[J]. IEEE Trans.on Information Theory, 2010, 56 (4): 1982- 2001. doi: 10.1109/TIT.2010.2040894
 | 
																													
																						| 25 | LIU C ,  CHEN S C ,  XI F F , et al.  Block sparse representation and suppression of narrow-band interference signals for quadrature compressive sampling radar[J]. Signal Processing, 2018, 150 (9): 135- 144. | 
																													
																						| 26 | MA Z, LIU Y L, MENG H M, et al. Jointly sparse recovery of multiple snapshots in STAP[C]//Proc. of the IEEE Radar Conference, 2013. | 
																													
																						| 27 | WANG L, LIU Y, MA Z G, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]//Proc. of the IEEE Radar Conference, 2015. | 
																													
																						| 28 | BOUFOUNOS P T, BARANIUK R G. 1-bit compressive sensing[C]//Proc. of the 42nd Annual Conference on Information Sciences and Systems, 2008: 16-21. | 
																													
																						| 29 | ELDAR Y C ,  KUPPINGER P ,  BOLCSKEI H .  Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Trans.on Signal Processing, 2010, 58 (6): 3042- 3054. doi: 10.1109/TSP.2010.2044837
 | 
																													
																						| 30 | BARANIUK R G ,  CEVHER V ,  DUARTE M F , et al.  Model-based compressive sensing[J]. IEEE Trans.on Information Theory, 2010, 56 (4): 1982- 2001. doi: 10.1109/TIT.2010.2040894
 | 
																													
																						| 31 | ELDAR Y C ,  MISHALI M .  Robust recovery of signals from a structured union of subspaces[J]. IEEE Trans.on Information Theory, 2009, 65 (2): 3812- 3824. | 
																													
																						| 32 | ELDAR ,  YONINA C .  Average case analysis of multichannel sparse recovery using convex relaxation[J]. IEEE Trans.on Information Theory, 2010, 66 (3): 3721- 3734. | 
																													
																						| 33 | ELHAMIFAR E ,  VIDAL R .  Block-sparse recovery via convex optimization[J]. IEEE Trans.on Signal Processing, 2012, 60 (8): 4094- 4107. doi: 10.1109/TSP.2012.2196694
 | 
																													
																						| 34 | BAJWA W U ,  DUARTE M F ,  CALDERBANK R .  Conditioning of random block subdictionaries with applications to block-sparse recovery and regression[J]. IEEE Trans.on Information Theory, 2015, 61 (7): 4060- 4079. doi: 10.1109/TIT.2015.2429632
 | 
																													
																						| 35 | CANDES E ,  TAO T .  Decoding by linear programming[J]. IEEE Trans.on Information Theory, 2005, 4203- 4215. |