| 1 | TABLET T ,  SAMDANIS K ,  MADA B , et al.  On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration[J]. IEEE Communications Surveys & Tutorials, 2017, 19 (3): 1657- 1681. | 
																													
																						| 2 | CISCO. Cisco annual internet report (2018-2023) white paper[EB/OL]. [2021-01-14]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html. | 
																													
																						| 3 | ETSI GS MEC-IEG 004 V1.1.1. Mobile-edge computing (MEC) service scenarios[S]. France: European Telecommunications Standards Institute, 2015. | 
																													
																						| 4 | 王汝言, 聂轩, 吴大鹏, 等.  社会属性感知的边缘计算任务调度策略[J]. 电子与信息学报, 2020, 42 (1): 271- 278. | 
																													
																						|  | WANG E Y ,  NIE X ,  WU D P , et al.  Social attribute aware task scheduling strategy in edge computing[J]. Journal of Electronics & Information Technology, 2020, 42 (1): 271- 278. | 
																													
																						| 5 | GAO B, ZHOU Z, LIU F M, et al. Winning at the starting line: joint network selection and service placement for mobile edge computing[C]//Proc. of the IEEE Conference on Computer Communications, 2019: 1459-1467. | 
																													
																						| 6 | BRIK B, FRANGOUDIS P A, KSENTINI A. Service-oriented MEC applications placement in a federated edge cloud architecture[C]//Proc. of the IEEE International Conference on Communications, 2020. | 
																													
																						| 7 | JEONGHO K, GEORGE I. DSP: dynamic service placement with reconfiguration cost and delay[C]//Proc. of the International Conference on Information and Communication Technology Convergence, 2020: 244-247. | 
																													
																						| 8 | OUYANG T ,  ZHOU Z ,  CHEN X .  Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2018, 36 (10): 2333- 2345. doi: 10.1109/JSAC.2018.2869954
 | 
																													
																						| 9 | CHEN L X ,  XU J ,  REN S L , et al.  Spatio-temporal edge ser-vice placement: a bandit learning approach[J]. IEEE Trans.on Wireless Communications, 2018, 17 (12): 8388- 8401. doi: 10.1109/TWC.2018.2876823
 | 
																													
																						| 10 | MOUBAYED A ,  SHAMI A ,  HEIDARI P , et al.  Edge-en-abled V2X service placement for intelligent transportation systems[J]. IEEE Trans.on Mobile Computing, 2021, 20 (4): 1380- 1392. doi: 10.1109/TMC.2020.2965929
 | 
																													
																						| 11 | PASTERIS S, WANG S, HERBSTER M, et al. Service placement with provable guarantees in heterogeneous edge computing systems[C]//Proc. of the IEEE Conference on Computer Communications, 2019: 514-522. | 
																													
																						| 12 | LI Z D, LV J, WU D P. Intelligent emotion detection method in mobile edge computing networks[C]//Proc. of the IEEE/CIC International Conference on Communications in China, 2020: 1214-1219. | 
																													
																						| 13 | CHEN L X ,  XU J .  Budget-constrained edge service provisioning with demand estimation via bandit learning[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (10): 2364- 2376. doi: 10.1109/JSAC.2019.2933781
 | 
																													
																						| 14 | SAMI H ,  MOURAD A ,  EL-HAJJ W .  Vehicular-OBUs-as-on-demand-fogs: resource and context aware deployment of containerized micro-services[J]. IEEE/ACM Trans.on Networking, 2020, 28 (2): 778- 790. doi: 10.1109/TNET.2020.2973800
 | 
																													
																						| 15 | WANG X F ,  HAN Y W ,  LEUNG V C M , et al.  Convergence of edge computing and deep learning: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22 (2): 869- 904. | 
																													
																						| 16 | REN J K ,  YU G D ,  HE Y H .  Collaborative cloud and edge computing for latency minimization[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (5): 5031- 5044. doi: 10.1109/TVT.2019.2904244
 | 
																													
																						| 17 | WANG F X ,  ZHANG M ,  WANG X X , et al.  Deep learning for edge computing applications: a state-of-the-art survey[J]. IEEE Access, 2020, 8, 58322- 58336. doi: 10.1109/ACCESS.2020.2982411
 | 
																													
																						| 18 | WANG X M ,  ZHANG Y H ,  SHEN R J , et al.  DRL-based energy-efficient resource allocation frameworks for uplink NOMA systems[J]. IEEE Internet of Things Journal, 2020, 7 (8): 7279- 7294. doi: 10.1109/JIOT.2020.2982699
 | 
																													
																						| 19 | GUO S Y ,  DAI Y ,  XU S Y , et al.  Trusted cloud-edge network resource management: DRL-driven service function chain orchestration for IoT[J]. IEEE Internet of Things Journal, 2020, 7 (7): 6010- 6022. doi: 10.1109/JIOT.2019.2951593
 | 
																													
																						| 20 | FU F, KANG Y P, ZHANG Z C, et al. Transcoding for live streaming-based on vehicular fog computing: an actor-critic DRL approach[C]//Proc. of the IEEE Conference on Computer Communications Workshops, 2020: 1015-1020. |