1 |
ELDEMERDASH Y A , DOBRE O A , ÖNER M . Signal identification for multiple-antenna wireless systems: achievements and challenges[J]. IEEE Communications Surveys & Tutorials, 2016, 18 (3): 1524- 1551.
|
2 |
KARAMI E , DOBRE O A . Identification of SM-OFDM and AL-OFDM signals based on their second-order cyclostationarity[J]. IEEE Trans.on Vehicular Technology, 2015, 64 (3): 942- 953.
doi: 10.1109/TVT.2014.2326107
|
3 |
GAO M J, LI Y Z, LI T, et al. Blind identification of MIMO-SFBC signals over frequency-selective channels[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2017.
|
4 |
GAO M J, LI Y Z, MAO L T, et al. Blind identification of SFBC-OFDM signals using two-dimensional space-frequency redundancy[C]//Proc. of the IEEE Global Communications Confe- rence, 2017.
|
5 |
GAO M J , LI Y Z , DOBRE O A , et al. Blind identification of SFBC-OFDM signals based on the central limit theorem[J]. IEEE Trans.on Wireless Communications, 2019, 18 (7): 3500- 3514.
doi: 10.1109/TWC.2019.2914687
|
6 |
MAREY M , DOBRE O A . Automatic identification of space-frequency block coding for OFDM System[J]. IEEE Trans.on Wireless Communications, 2017, 16 (1): 117- 128.
doi: 10.1109/TWC.2016.2619676
|
7 |
GAO M J , LI Y Z , DOBRE O A , et al. Blind identification of SFBC-OFDM signals using subspace decompositions and random matrix theory[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (10): 9619- 9630.
doi: 10.1109/TVT.2018.2859761
|
8 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022
|
9 |
MENG F , CHEN P , WU L N , et al. Automatic modulation classification a deep learning enabled approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10760- 10772.
|
10 |
WANG Y , LIU M , YANG J , et al. Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (4): 4074- 4077.
doi: 10.1109/TVT.2019.2900460
|
11 |
KONG S H , KIM M J , HOANG L M , et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942
|
12 |
黄颖坤, 金炜东, 余志斌, 等. 基于深度学习和集成学习的辐射源信号识别[J]. 系统工程与电子技术, 2018, 40 (11): 2420- 2425.
doi: 10.3969/j.issn.1001-506X.2018.11.05
|
|
HUANG Y K , JIN W D , YU Z B , et al. Radar emitter signal recognition based on deep learning and ensemble learning[J]. Systems Engineering and Electronics, 2018, 40 (11): 2420- 2425.
doi: 10.3969/j.issn.1001-506X.2018.11.05
|
13 |
郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40 (4): 875- 881.
|
|
GUO L M , KOU Y H , CHEN T , et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40 (4): 875- 881.
|
14 |
秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
|
QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006
|
15 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2020-10-08]. https://arxiv.org/abs/1511.07122.
|
16 |
HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
|
17 |
POOJA K, NIDAMANURI R R, MISHRA D. Multi-scale dilated residual convolutional neural network for hyperspectral image classification[C]//Proc. of the 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, 2019.
|