1 |
郭萌. 基于改进POCS的红外弱小目标超分辨率复原算法研究[D]. 吉林: 吉林大学, 2016.
|
|
GUO M. Super-resolution restoration algorithm of small infrared targets based on improved POCS[D]. Jilin: Jilin University, 2016.
|
2 |
DAI S S, XIANG H Y, DU Z H, et al. Adaptive regularization of infrared image super-resolution reconstruction[C]//Proc. of the 5th International Conference on Computing, Communications and Networking Technologies, 2014.
|
3 |
CASTRO E B , NAKANO M , PEREZ G S , et al. Improvement of image super-resolution algorithms using iterative back projection[J]. IEEE Latin America Transactions, 2017, 15 (11): 2214- 2219.
doi: 10.1109/TLA.2017.8070429
|
4 |
黎海雪, 林海涛, 姜栋瀚. 基于马尔可夫随机场的图像超分辨技术研究综述[J]. 通信技术, 2018, 51 (10): 2356- 2364.
doi: 10.3969/j.issn.1002-0802.2018.10.015
|
|
LI H X , LIN H T , JIANG D H . Research review of image superresolution based on Markov random field[J]. Communications Technology, 2018, 51 (10): 2356- 2364.
doi: 10.3969/j.issn.1002-0802.2018.10.015
|
5 |
熊亚辉, 陈东方, 王晓峰. 基于多尺度反向投影的图像超分辨率重建算法[J]. 计算机工程, 2020, 46 (7): 251- 259.
|
|
XIONG Y H , CHEN D F , WANG X F . Super-resolution image reconstruction algorithm based on multi-scale back projection[J]. Computer Engineering, 2020, 46 (7): 251- 259.
|
6 |
FREEMAN W T , JONES T R , PASZTOR E C . Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, (2): 56- 65.
|
7 |
DANG C , AGHAGOLZADEH M , RADHA H . Image super-resolution via local self-learning manifold approximation[J]. IEEE Signal Processing Letters, 2014, 21 (10): 1245- 1249.
doi: 10.1109/LSP.2014.2332118
|
8 |
杨学峰, 程耀瑜, 王高. 基于小波域压缩感知的遥感图像超分辨算法[J]. 计算机应用, 2017, 37 (5): 1430- 1433.
|
|
YANG X F , CHENG Y Y , WANG G . A super-resolution algorithm for remote sensing images based on wavelet compressed sensing[J]. Journal of Computer Applications, 2017, 37 (5): 1430- 1433.
|
9 |
王彩云, 胡允侃, 李晓飞, 等. 基于卷积稀疏编码与多分类器融合的雷达HRRP目标识别方法[J]. 系统工程与电子技术, 2018, 40 (11): 2433- 2437.
doi: 10.3969/j.issn.1001-506X.2018.11.07
|
|
WANG C Y , HU Y K , LI X F , et al. Radar HRRP target recognition based on convolutional sparse coding and multi-classifier fusion[J]. Systems Engineering and Electronics, 2018, 40 (11): 2433- 2437.
doi: 10.3969/j.issn.1001-506X.2018.11.07
|
10 |
张万绪, 史剑雄, 陈晓璇, 等. 基于稀疏表示与引导滤波的图像超分辨率重建[J]. 计算机工程, 2018, 44 (9): 212- 217.
|
|
ZHANG W X , SHI J X , CHEN X X , et al. Image super-resolution reconstruction based on sparse representation and guided filtering[J]. Computer Engineering, 2018, 44 (9): 212- 217.
|
11 |
TIMOFTE R, DE S V, VAN G L. A+: adjusted anchored neighborhood regression for fast super-resolution[C]//Proc. of the Asian Conference on Computer Vision, 2014: 111-126.
|
12 |
YANG C Y, YANG M H. Fast direct super-resolution by simple functions[C]//Proc. of the IEEE International Conference on Computer Vision, 2014: 561-568.
|
13 |
DONG C , LOY C C , HE K , et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 295- 307.
doi: 10.1109/TPAMI.2015.2439281
|
14 |
吴磊, 吕国强, 薛治天, 等. 基于多尺度递归网络的图像超分辨率重建[J]. 光学学报, 2019, 39 (6): 90- 97.
|
|
WU L , LYU G Q , XUE Z T , et al. Super-resolution reconstruction of images based on multi-scale recursive network[J]. Acta Optica Sinica, 2019, 39 (6): 90- 97.
|
15 |
WANG Y, ZHENG J C. Real-time face detection based on YOLO[C]//Proc. of the IEEE 1st International Conference on Knowledge Innovation and Invention, 2018: 221-224.
|
16 |
刘帆, 刘鹏远, 李兵, 等. TensorFlow平台下的视频目标跟踪深度学习模型设计[J]. 激光与光电子学进展, 2017, 54 (9): 277- 285.
|
|
LIU F , LIU P Y , LI B , et al. Design of video target tracking depth learning model under TensorFlow platform[J]. Laser & Optoelectronics Progress, 2017, 54 (9): 277- 285.
|
17 |
朱新山, 姚思如, 孙彪, 等. 图像质量评价: 融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报, 2018, 50 (5): 121- 128.
|
|
ZHU X S , YAO S R , SUN B , et al. Image quality evaluation: fusion of visual characteristics and structural similarity indicators[J]. Journal of Harbin Institute of Technology, 2018, 50 (5): 121- 128.
|
18 |
PREEDANAN W, KONDO T, BUNNUN P, et al. Image quality assessment for medical images based on gradient information[C]//Proc. of the 5th International Conference on Business and Industrial Research, 2018: 189-194.
|
19 |
XUE W , ZHANG L , MOU X , et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Trans.on Image Processing, 2014, 23 (2): 684- 695.
doi: 10.1109/TIP.2013.2293423
|
20 |
DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proc. of the European Conference on Computer Vision, 2016: 391-407.
|
21 |
LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proc. of IEEE International Conference on Computer Vision, 2017: 2755-2762.
|