| 1 | GRUSON H .  Digest: evolution of camouflage patterns in geckos[J]. Evolution, 2020, 74 (6): 1224- 1225. doi: 10.1111/evo.13999
 | 
																													
																						| 2 | CUTHILL I C .  Camouflage[J]. Zool, 2019, 308, 75- 92. | 
																													
																						| 3 | 杨晔, 夏前军, 钱坤, 等.  单兵伪装服及其伪装方法的研究进展[J]. 纺织导报, 2019, (8): 57- 60. doi: 10.3969/j.issn.1003-3025.2019.08.016
 | 
																													
																						|  | YANG Y ,  XIA Q K ,  QIAN K , et al.  Research progress of individual camouflage clothing and camouflage methods[J]. Textile Herald, 2019, (8): 57- 60. doi: 10.3969/j.issn.1003-3025.2019.08.016
 | 
																													
																						| 4 | SHELHAMER E ,  LONG J ,  DARRELL T .  Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651. doi: 10.1109/TPAMI.2016.2572683
 | 
																													
																						| 5 | MO S W ,  DENG X P ,  WANG S , et al.  Moving object detection algorithm based on improved visual background extractor[J]. Acta Optica Sinica, 2016, 36 (6): 0615001. doi: 10.3788/AOS201636.0615001
 | 
																													
																						| 6 | CARREIRA J C .  CPMC: automatic object segmentation using constrained parametric min-cuts[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2012, 34 (7): 1312- 1328. doi: 10.1109/TPAMI.2011.231
 | 
																													
																						| 7 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. | 
																													
																						| 8 | HARIHARAN B, ARBEL E Z P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proc. of the European Conference on Computer Vision, 2014: 297-312. | 
																													
																						| 9 | LONG J ,  SHELHAMER E ,  DARRELL T , et al.  Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651. doi: 10.1109/TPAMI.2016.2572683
 | 
																													
																						| 10 | BADRINARAYANAN V ,  KENDALL A ,  CIPOLLA R .  SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495. doi: 10.1109/TPAMI.2016.2644615
 | 
																													
																						| 11 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. | 
																													
																						| 12 | WANG Z. Theoretical guarantees of transfer learning[EB/OL]. [2021-02-25]. https://arxiv.org/abs/1810.05986V2. | 
																													
																						| 13 | HU J, SHEN L, SAMUEL A, et al. Gather-excite: exploiting feature context in convolutional neural networks[EB/OL]. [2021-05-25]. https://arxiv.org/abs/1810.12348V2. | 
																													
																						| 14 | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. | 
																													
																						| 15 | LIU F J, TIA H J. Dual attention network for scene segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154. | 
																													
																						| 16 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. | 
																													
																						| 17 | WANG Q Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proc. of the CVF Conference on Computer Vision and Pattern Recognition, 2020. | 
																													
																						| 18 | HU J, SHEN L S, SUN G H, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. | 
																													
																						| 19 | AMIR R Z, ALEXANDER S, SHEN W, et al. Taskonomy: disentangling task transfer learning. In IEEE CVPR, 2018: 3712-3722. | 
																													
																						| 20 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-02-25]. https://arxiv.org/abs/14091556. | 
																													
																						| 21 | KRIZHEVSKY A ,  SUTSKEVER I ,  HINTON G .  ImageNet classfication with deep neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25 (2): 381- 394. | 
																													
																						| 22 | FAN D P, JI G P, SUN G, et al. Camouflaged object detection[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 2777-2787. | 
																													
																						| 23 | SKUROWSKI P ,  ABDULAMEER H ,  BŁASZCZYK J , et al.  Animal camouflage analysis: chameleon database[J]. Unpublished Manuscript, 2018, 2 (6): 7- 15. | 
																													
																						| 24 | LE T N ,  NGUYEN T V ,  NIE Z , et al.  Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184, 45- 56. doi: 10.1016/j.cviu.2019.04.006
 | 
																													
																						| 25 | LIN T Y .  Focal loss for dense object detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327. doi: 10.1109/TPAMI.2018.2858826
 | 
																													
																						| 26 | LIN T Y ,  WELLS W M ,  GRIMSON W E L , et al.  Adaptive segmentation of MRI data[J]. IEEE Trans.on Medical Imaging, 1996, 15 (4): 429- 442. doi: 10.1109/42.511747
 |