系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (12): 3863-3870.doi: 10.12305/j.issn.1001-506X.2022.12.32

• 通信与网络 • 上一篇    

基于注意力机制的混合CNN-BiLSTM低轨卫星信道预测算法

唐一强*, 杨霄鹏, 朱圣铭   

  1. 空军工程大学信息与导航学院, 陕西 西安 710077
  • 收稿日期:2021-11-12 出版日期:2022-11-14 发布日期:2022-11-24
  • 通讯作者: 唐一强
  • 作者简介:唐一强(1997—), 男, 硕士研究生, 主要研究方向为低轨道卫星通信的资源分配优化|杨霄鹏(1973—), 男, 副教授, 博士, 主要研究方向为无线通信与网络|朱圣铭(1997—), 男, 硕士研究生, 主要研究方向为卫星认知技术

Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism

Yiqiang TANG*, Xiaopeng YANG, Shengming ZHU   

  1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China
  • Received:2021-11-12 Online:2022-11-14 Published:2022-11-24
  • Contact: Yiqiang TANG

摘要:

针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题, 提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network, AT-CNN-BiLSTM)融合的信道预测方法。该方法由信号预处理、网络训练和信号预测3部分组成。首先在高斯白噪声条件下模拟室外卫星信号, 得到卫星信号的训练集和测试集; 然后将训练集输入构建的训练网络进行特征提取; 最后将测试数据输入网络进行预测分析。仿真结果表明, 在与其他4种人工智能方法的对比中, 所提出的混合神经网络能够在较快的收敛速度下达到较高的准确率(91.8%), 有效地缓解了低轨道卫星信道参数“过时”的现状, 对提升卫星通信质量和节省卫星信道资源有良好的改善作用。

关键词: 低轨卫星, 信道预测, 注意力机制, 卷积神经和双向长短时记忆混合神经网络

Abstract:

To deal with the problem of the low earth orbit (LEO) satellite rapidly changing channels' qualities and outdated parameters, a channels prediction algorithm attention-convolutional neural network and bi-directional long-short term memory neural network(AT-CNN-BiLSTM) is proposed. The proposed method consists of the signals preprocessing, the network training and the signals prediction components. Simulating the outdoor satellite signals under the Gaussian white noise, a training set and a testing set of the satellite signals will be obtained. Then we input the training set into the training unit for features extraction, and finally input the testing set into the network for prediction analysis. The simulation results show that in the comparison of other four artificial intelligence methods, the hybrid neural network can achieve a high accuracy (91.8%) at a fast convergent speed, which effectively solves the difficulty of the LEO satellite outdated channel parameters. The proposed method can improve the satellite communication qualities and save the satellite channels' resources.

Key words: low earth orbit (LEO) satellite, channels prediction, attention mechanism, hybrid convolutional neural network and bi-directional long-short term memory neural network (CNN-BiLSTM)

中图分类号: