1 |
MUMTAZ S , RODRIQUEZ J , DAI L L . mmWave massive MIMO: a paradigm for 5G[M]. New York: Academic, 2016.
|
2 |
BOCCARDI F , HEATH R , LOZANO A , et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52 (2): 74- 80.
doi: 10.1109/MCOM.2014.6736746
|
3 |
康国良. 毫米波大规模MIMO系统信道估计算法研究[D]. 南昌: 江西理工大学, 2018.
|
|
KANG G L. Research on channel estimation algorithm for millimeter wave massive MIMO system[D]. Nanchang: Jiangxi University of Science and Technology, 2018.
|
4 |
SWINDLEHURST A L , AYANOGLU E , HEYDARI P , et al. Millimeter-wave massive MIMO: the next wireless revolution?[J]. IEEE Communication Magazine, 2014, 52 (9): 56- 62.
doi: 10.1109/MCOM.2014.6894453
|
5 |
SUN Z H, ZHAO Z, FU X M, et al. Limited feedback double directional massive MIMO channel estimation: from low-rank modeling to deep learning[C]//Proc. of the IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications, 2018.
|
6 |
HUANG X, LIU S M. Massive MIMO channel estimation for vehicular communications: a deep learning based approach[C]//Proc. of the IEEE International Conference on Communications Workshops, 2020.
|
7 |
DEMIR O T , BJORNSON E . Channel estimation in massive MIMO under hardware non-linearities: Bayesian methods versus deep learning[J]. IEEE Open Journal of the Communications Society, 2020, 32 (8): 109- 124.
|
8 |
YE H , LI G Y , JUAN G B . Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7 (1): 114- 117.
doi: 10.1109/LWC.2017.2757490
|
9 |
ANG H J , SONG Y , YANG J H , et al. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (3): 3027- 3032.
doi: 10.1109/TVT.2019.2893928
|
10 |
MA J J , PING L . Data-aided channel estimation in large antenna systems[J]. IEEE Trans.on Signal Processing, 2014, 62 (12): 3111- 3124.
doi: 10.1109/TSP.2014.2321120
|
11 |
CHEN X Y , JIANG M F . Adaptive statistical Bayesian MMSE channel estimation for visible light communication[J]. IEEE Trans.on Signal Processing, 2017, 65 (5): 1287- 1299.
doi: 10.1109/TSP.2016.2630036
|
12 |
GAO Z , DAI L L , WANG Z , et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[J]. IEEE Trans.on Signal Processing, 2015, 63 (23): 6169- 6183.
doi: 10.1109/TSP.2015.2463260
|
13 |
邵凯, 陈连成, 刘胤. 高移动性Jakes信道的学习与估计[J]. 系统工程与电子技术, 2020, 43 (4): 1119- 1125.
|
|
SHAO K , CHEN L C , LIU Y . Learning and estimation of high mobility Jakes channel[J]. Systems Engineering and Electro-nics, 2020, 43 (4): 1119- 1125.
|
14 |
LUO C Z , JI J , WANG Q Y , et al. Channel state information prediction for 5G wireless communications: a deep learning approach[J]. IEEE Trans.on Network Science and Engineering, 2020, 7 (1): 227- 236.
doi: 10.1109/TNSE.2018.2848960
|
15 |
SABETI P, FARHANG A, MACALUSO I, et al. Blind channel estimation for massive MIMO: a deep learning assisted approach[C]//Proc. of the IEEE International Conference on Communications, 2020.
|
16 |
GAO Z F , WANG Y , LIU X F , et al. FFDNet-based channel estimation for massive MIMO visible light communication systems[J]. IEEE Wireless Communications Letters, 2020, 9 (3): 340- 343.
doi: 10.1109/LWC.2019.2954511
|
17 |
GU J W, SHAN C, CHEN X L, et al. A novel pilot-aided channel estimation scheme based on RNN for FDD-LTE systems[C]//Proc. of the 10th International Conference on Wireless Communications and Signal Processing, 2018.
|
18 |
JIN J , ZHANG J M , JIN S W , et al. Channel estimation for cell-free mmWave massive MIMO through deep learning[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (10): 10325- 10329.
doi: 10.1109/TVT.2019.2937543
|
19 |
ZHANG K , ZUO W L , CHEN Y Q , et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans.on Image Processing, 2017, 26 (7): 3142- 3155.
doi: 10.1109/TIP.2017.2662206
|
20 |
罗仁泽, 王瑞杰, 张可, 等. 残差卷积自编码网络图像去噪方法[J]. 计算机仿真, 2021, 38 (5): 455- 461.
doi: 10.3969/j.issn.1006-9348.2021.05.093
|
|
LUO R Z , WANG R J , ZHANG K , et al. Residual convolution self-encoding network image denoising method[J]. Computer Simulation, 2021, 38 (5): 455- 461.
doi: 10.3969/j.issn.1006-9348.2021.05.093
|
21 |
杜渺勇, 于祥雨, 周浩, 等. 基于自编码卷积神经网络的图像去噪算法[J]. 杭州师范大学学报(自然科学版), 2021, 20 (1): 95- 101.
|
|
DU M Y , YU X Y , ZHOU H , et al. Image denoising algorithm based on self-encoding convolutional neural network[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2021, 20 (1): 95- 101.
|
22 |
卢文侣. 毫米波大规模MIMO系统信道估计研究[D]. 北京: 北京邮电大学, 2017.
|
|
LU W L. Channel estimation study of millimeter wave large-scale MIMO system[D]. Beijing: Beijing University of Posts and Telecommunications, 2017.
|
23 |
HE H , WEN C K , JIN S , et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems[J]. IEEE Wireless Communication Letters, 2018, 7 (5): 852- 855.
doi: 10.1109/LWC.2018.2832128
|
24 |
LIN Z, FENG M, SANTOS C N, et al. A structured self-attentive sentence embedding[EB/OL]. [2021-06-22]. ar Xiv preprint ar Xiv: 1703.03130, 2017.
|
25 |
ZHANG K, ZUO W Y, GU S, et al. Learning deep CNN denoiser prior for image restoration[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3929-3938.
|
26 |
WANG J K , ZHENG Y , WANG M H , et al. Object-scale adaptive convolutional neural networks for high-spatial resolution remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 283- 299.
doi: 10.1109/JSTARS.2020.3041859
|
27 |
TAMURA H, YANGAGISAWA K, SHIRANE A, et al. Wireless devices identification with light-weight convolutional neural network operating on quadrant IQ transition image[C]//Proc. of the 18th IEEE International New Circuits and Systems Conference, 2020: 106-109.
|
28 |
GUO S, YAN Z, ZHANG K P, et al. Toward convolutional blind denoising of real photographs[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1712-1722.
|
29 |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40 (6): 1229- 1251.
|
|
ZHOU F Y , JIN L P , DONG J . A review of research on convolutional neural networks[J]. Acta computerica sinica, 2017, 40 (6): 1229- 1251.
|
30 |
ALKHATEEB A. DeepMIMO: a generic deep learning dataset for millimeter wave and massive MIMO applications[C]//Proc. of the Information Theory and Applications Workshop, 2019.
|