系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 307-312.doi: 10.12305/j.issn.1001-506X.2022.01.38

• 通信与网络 • 上一篇    下一篇

注意力机制CNN的毫米波大规模MIMO系统信道估计算法

刘紫燕*, 马珊珊, 梁静, 朱明成, 袁磊   

  1. 贵州大学大数据与信息工程学院, 贵州 贵阳 550025
  • 收稿日期:2020-12-31 出版日期:2022-01-01 发布日期:2022-01-19
  • 通讯作者: 刘紫燕
  • 作者简介:刘紫燕(1974—), 女, 副教授, 硕士, 主要研究方向为无线通信系统、移动机器人、大数据挖掘分析|马珊珊(1996—), 女, 硕士研究生, 主要研究方向为信道估计|梁静(1977—), 女, 讲师, 硕士, 主要研究方向为无线通信系统|朱明成(1993—), 男, 硕士研究生, 主要研究方向为视频行人重识别|袁磊(1995—), 男, 硕士研究生, 主要研究方向为目标检测
  • 基金资助:
    贵州省科学技术基金(黔科合基础[2016]1054);贵州省联合资金(黔科合LH字[2017]7226);贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788);贵州省科技计划(黔科合SY字[2011]3111)(黔科合SY字[2011]3111)

Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system

Ziyan LIU*, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN   

  1. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
  • Received:2020-12-31 Online:2022-01-01 Published:2022-01-19
  • Contact: Ziyan LIU

摘要:

在室外光线追踪通信场景下, 针对毫米波大规模多输入多输出(multiple input multiple output, MIMO)信道具有稀疏特性、系统受噪声因素影响导致信道估计精度低的问题, 提出一种基于图像去噪的注意力机制卷积神经网络信道估计方法。首先, 设定参数产生模拟真实环境的数据集, 将所产生的信道矩阵看作二维图像。然后, 构建注意力机制网络以增强图像中噪声特征的显著性, 并将注意力机制网络嵌入卷积神经网络中进行特征融合。最后, 通过网络模型提取噪声并得到去噪的图像, 即估计信道矩阵。仿真结果表明, 与最小二乘法(least square, LS)、最小均方误差(minimum mean square error, MMSE)、卷积神经网络(convolutional neural network, CNN)和去噪CNN (denoising CNN, DnCNN)算法相比, 所提出的Attention-CNN方法信道估计精度平均提升约1.86 dB。

关键词: 毫米波大规模多输入多输出, 信道估计, 卷积神经网络, 注意力机制, 去噪

Abstract:

In outdoor ray tracing communication scenarios, aiming at the problems of low channel estimation accuracy defected by its sparse characteristics and noise factors in millimeter-wave massive multiple input multiple output (MIMO), an image denoising attention mechanism based convolutional neural network channel estimation algorithm is proposed. Firstly, after constructing the data set for simulating the real environment by setting the parameters, generate channel matrix is regarded as a two-dimensional image. Then, the attention mechanism network is constructed to enhance the saliency of the noise features in the image, and the attention mechanism network is embedded in the convolutional neural network (CNN) for feature fusion. Finally, the noise extracted by the network model achieves the denoising effect and the denoised image, the estimated channel matrix is obtained. The simulation results demonstrate that the proposed attention mechanism based CNN (Attention-CNN) algorithm achieves better performance of higher channel estimation accuracy, which improved by about 1.86 dB on average, compared with least square (LS), minimum mean square error (MMSE), CNN and denoising convolutional neural network (DnCNN).

Key words: millimeter-wave massive multiple input multiple output (MIMO), channel estimation, convolutional neural network (CNN), attention mechanism, denoising

中图分类号: