系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 730-744.doi: 10.12305/j.issn.1001-506X.2025.03.06

• 电子技术 • 上一篇    

面向电磁信息智能控制的生成对抗网络研究进展

张兰1,2,*, 张彪1,2, 梁天一1,2, 朱辉杰1,2   

  1. 1. 中国电子科技集团公司第三十六研究所, 浙江 嘉兴 314033
    2. 电磁空间安全全国重点实验室, 浙江 嘉兴 314033
  • 收稿日期:2024-03-24 出版日期:2025-03-28 发布日期:2025-04-18
  • 通讯作者: 张兰
  • 作者简介:张彪(1999—), 男, 助理工程师, 硕士, 主要研究方向为强化学习、机器学习
    梁天一(1993—), 女, 工程师, 硕士, 主要研究方向为通信信号处理、辐射源识别
    朱辉杰(1987—), 男, 正高级工程师, 博士, 主要研究方向为通信信号处理、5G通信技术

Research progress on generative adversarial network for electromagnetic information intelligent control

Lan ZHANG1,2,*, Biao ZHANG1,2, Tianyi LIANG1,2, Huijie ZHU1,2   

  1. 1. The 36th Research Institution of China Electronics Technology Group Corporation, Jiaxing 314033, China
    2. National Key Laboratory of Electromagnetic Space Security, Jiaxing 314033, China
  • Received:2024-03-24 Online:2025-03-28 Published:2025-04-18
  • Contact: Lan ZHANG

摘要:

电磁信息智能控制是现代战争中管理和利用电磁环境的关键技术,观察-判断-决策-行动(observe-orient-decide-act, OODA)循环提供了这一过程的理论指导。生成对抗网络(generative adversarial network,GAN)及其衍生模型,凭借其出色的数据生成和适应能力,极大增强了在电磁环境信息观察和分析方面的能力,为电磁频谱战中OODA循环的智能化提供了新动力。本文深入探讨GAN及其衍生模型在电磁频谱战OODA循环中的应用,特别是其如何在信号检测识别、辐射源识别、策略优化等关键环节中提高认知效能。同时,对于GAN在此领域应用所面临的挑战进行探讨,如数据质量和模型泛化能力,旨在推动该技术在电磁信息智能控制领域的深入研究和应用,进而促进技术创新与发展。

关键词: 电磁信息智能控制, 生成对抗网络, 观察-判断-决策-行动循环, 信号识别, 策略优化

Abstract:

Electromagnetic information intelligent control is a key technology for managing and utilizing the electromagnetic environment in modern warfare, with the observe-orient-decide-act (OODA) loop providing theoretical guidance for this process. Generative adversarial network (GAN) and its derivative models, with their outstanding data generation and adaptation capabilities, significantly enhance the observation and analysis ability of electromagnetic environment information, bringing new momentum to the intelligence of the OODA loop in electromagnetic spectrum warfare. This paper delves into the application of GAN and their derivatives in the OODA loop of electromagnetic spectrum warfare, particularly how they enhance cognitive efficacy in key aspects such as signal detection and identification, specific emitter identification, and strategy optimization. Additionally, it discusses the challenges GAN face in this field, such as data quality and model generalization capabilities, aiming to promote in-depth research and application of this technology in the field of electromagnetic information intelligent control, thereby fostering technological innovation and development.

Key words: electromagnetic information intelligent control, generative adversarial network (GAN), observe-orient-decide-act (OODA) loop, signal recognition, strategy optimization

中图分类号: