系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 730-744.doi: 10.12305/j.issn.1001-506X.2025.03.06
• 电子技术 • 上一篇
张兰1,2,*, 张彪1,2, 梁天一1,2, 朱辉杰1,2
收稿日期:
2024-03-24
出版日期:
2025-03-28
发布日期:
2025-04-18
通讯作者:
张兰
作者简介:
张彪(1999—), 男, 助理工程师, 硕士, 主要研究方向为强化学习、机器学习Lan ZHANG1,2,*, Biao ZHANG1,2, Tianyi LIANG1,2, Huijie ZHU1,2
Received:
2024-03-24
Online:
2025-03-28
Published:
2025-04-18
Contact:
Lan ZHANG
摘要:
电磁信息智能控制是现代战争中管理和利用电磁环境的关键技术,观察-判断-决策-行动(observe-orient-decide-act, OODA)循环提供了这一过程的理论指导。生成对抗网络(generative adversarial network,GAN)及其衍生模型,凭借其出色的数据生成和适应能力,极大增强了在电磁环境信息观察和分析方面的能力,为电磁频谱战中OODA循环的智能化提供了新动力。本文深入探讨GAN及其衍生模型在电磁频谱战OODA循环中的应用,特别是其如何在信号检测识别、辐射源识别、策略优化等关键环节中提高认知效能。同时,对于GAN在此领域应用所面临的挑战进行探讨,如数据质量和模型泛化能力,旨在推动该技术在电磁信息智能控制领域的深入研究和应用,进而促进技术创新与发展。
中图分类号:
张兰, 张彪, 梁天一, 朱辉杰. 面向电磁信息智能控制的生成对抗网络研究进展[J]. 系统工程与电子技术, 2025, 47(3): 730-744.
Lan ZHANG, Biao ZHANG, Tianyi LIANG, Huijie ZHU. Research progress on generative adversarial network for electromagnetic information intelligent control[J]. Systems Engineering and Electronics, 2025, 47(3): 730-744.
表1
应用于电磁信息智能控制中的GAN衍生模型的比较分析"
GAN衍生模型名称 | 改进的技术手段 | 优势 | 劣势 |
CGAN | 引入额外的条件信息 | 提高生成任务的灵活性和可控性 | 训练不稳定, 对于复杂、高维的条件变量处理能力有限 |
DCGAN | 使用CNN作为基础结构, 使用非线性激活函数和批量标化技术 | 提高了模型的非线性拟合能力和可扩展性 | 计算资源需求高, 训练过程稳定性较差 |
InfoGAN | 引入可解释的隐变量, 目标函数最大化隐变量和生成数据之间的互信息 | 实现可控生成, 增强模型的可解释性, 适用于无监督学习场景 | 训练过程缺乏稳定性, 隐变量解释具有主观性, 互信息估算不精确 |
ACGAN | 引入辅助分类器, 同时进行生成任务和分类任务 | 提升生成样本的多样性和分类准确性 | 训练稳定性较差, 计算资源和时间需求高, 条件约束选择要求较高 |
WGAN | 使用Wasserstein距离作为损失函数 | 提高训练过程的稳定性, 可定量评价生成模型性能 | K-Lipschitz约束实现复杂, 在大规模数据集上计算资源要求较高 |
BiGAN | 引入额外的编码器结构, 将真实数据分布映射到潜在噪声域 | 结构相对简单, 易于理解和实现; 双向学习机制提高特征提取和表示学习能力 | 引入编码器增加了训练的复杂性, 需要较多的计算资源 |
LSGAN | 使用最小平方损失函数替代交叉熵损失 | 缓解梯度消失问题, 提高训练稳定性, 具有良好的梯度流 | 收敛速度较慢, 对超参数敏感 |
表2
GAN及其衍生模型在电磁信息智能控制领域中的应用情况总结"
应用阶段 | 参考文献 | 采用的模型 | 解决的问题 | 面临的挑战 |
观察 | [ | GAN, CGAN | 自动特征提取,实现更准确的信号表征;端到端的信号处理流程,简化信号处理流程;高质量的噪声抑制,提高信号识别的准确性 | 训练过程的稳定性需要提高,生成信号的质量缺乏客观评价标准 |
判断 | [ | RCGAN, WGAN, ACGAN, LDCGAN, GAN, U-net GAN, CountGAN, AC-WGAN, InfoGAN | 通过生成新的信号样本,缓解小样本学习问题;通过结合不同网络结构,提升信号源识别准确率;在缺乏标注数据的情况下利用无监督学习提高目标检测与分类的准确性;通过学习正常数据分布为异常检测提供新视角 | 训练过程中可能产生模式单一,降低样本多样性;需要大量计算资源,可能限制其在资源受限环境下的实用性 |
决策 | [ | DRGAN, WGAN-GP, CGAN, ACGAN, LSGAN, DCGAN, CGAN | 利用强大的学习能力,生成与任意信号相似的波形模拟干扰攻击场景,增强对抗策略的适应性和决策制定能力 | 可能容易受到对抗性攻击,威胁系统安全性;在需要实时信号处理的决策中,GAN的推理速度需要进一步提升 |
行动 | [ | GAN, DJTGAN | 利用对抗性学习提高欺骗成功率;扩展至多天线应用场景,增强复杂环境中的欺骗攻击效果;生成高度匹配的干扰模板,丰富干扰数据库内容 | 技术实现复杂度较高:GAN的训练和应用需深入理解原理和网络结构;实时处理需求高:在行动阶段,GAN的推理速度需满足快速响应的要求 |
1 | KAREN Z H , JULIA A . Cognitive electronic warfare: an artificial intelligence approach[M]. Boston: Artech House, 2021. |
2 | 周波, 戴幻尧, 乔会东, 等. 基于"OODA环"理论的认知电子战与赛博战探析[J]. 中国电子科学研究院学报, 2014, 9 (6): 556- 562. |
ZHOU B , DAI H R , QIAO H D , et al. Exploration of cognitive electronic warfare and cyber warfare based on the "OODA Loop" theory[J]. Journal of China Electronics Science and Technology, 2014, 9 (6): 556- 562. | |
3 | GOODFELLOW I J, POUGHET-ABADIE J, MIRZA M, et al. Generative adversarial network[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1406.2661. |
4 |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63 (11): 139- 144.
doi: 10.1145/3422622 |
5 |
GUI J , SUN Z N , WEN Y G , et al. A review on generative adversa-rial networks: algorithms, theory, and applications[J]. IEEE Trans. on Knowledge and Data Engineering, 2023, 35 (4): 3313- 3332.
doi: 10.1109/TKDE.2021.3130191 |
6 |
PAN Z Q , YU W J , YI X K , et al. Recent progress on generative adversarial networks (GANs): a survey[J]. IEEE Access, 2019, 7, 36322- 36333.
doi: 10.1109/ACCESS.2019.2905015 |
7 |
ZHANG D , MA M , XIA L K . A comprehensive review on GANs for time-series signals[J]. Neural Computing and Applications, 2022, 34 (5): 3551- 3571.
doi: 10.1007/s00521-022-06888-0 |
8 | NAVIDAN H , MOSHIRI P F , NABATI M , et al. Generative adversarial networks (GANs) in networking: a comprehensive survey & evaluation[J]. Computer Networks, 2021 (194) |
9 | 孟婵媛, 熊轲, 高博, 等. 面向6G的生成对抗网络研究进展综述[EB/OL]. [2024-02-08]. https://link.cnki.net/urlid/10.1491.TP.20230925.1553.002. |
MENG C Y, XIONG K, GAO B, et al. A review on the progress of generative adversarial networks research for 6G[EB/OL]. [2024-02-08]. https://link.cnki.net/urlid/10.1491.TP.20230925.1553.002. | |
10 | ZOU C , YANG F , SONG J , et al. Generative adversarial network for wireless communication: principle, application, and trends[J]. IEEE Communications Magazine, 2023, 62 (5): 58- 64. |
11 | RICHARDS C. Boyd's OODA Loop[EB/OL]. [2025-03-06]. https://www.academia.edu/105969074/Boyd_s_OODA_Loop. |
12 | KINGMA D P, WELLING M. Auto-encoding variational bayes[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1312.6114. |
13 | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1606.03498. |
14 | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1411.1784. |
15 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversa-rial networks[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1511.06434. |
16 | CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[C]//Proc. of the 30th International Conference on Neural Information Processing Systems, 2016: 2180-2188. |
17 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversa-rial networks[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1511.06434. |
18 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proc. of the 34th International Conference on Machine Learning, 2017: 214-223. |
19 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2242-2251. |
20 | DONAHUE J, KRÄHENBVHL P, DARRELL T. Adversarial feature learning[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1605.09782. |
21 | ZHAO J, MATHIEU M, LECUN Y. Energy-based generative adversarial network[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1609.03126. |
22 | LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 105-114. |
23 | MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2813-2821. |
24 | ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL]. [2024-02-08]. http://arxiv.org/abs/1701.04862. |
25 | SOHRAB H H . Basic real analysis[M]. 2nd ed New York: Birkhäuse, 2014. |
26 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 5769-5779. |
27 |
SUN L , WANG Y , SWINDLEHURST A L , et al. Generative-adversarial-network enabled signal detection for communication systems with unknown channel models[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (1): 47- 60.
doi: 10.1109/JSAC.2020.3036954 |
28 | SHEN X, WEI L, XU Y Y. Signal detection method at the OFDM receiver based on conditional GAN[C]//Proc. of the IEEE 21st International Conference on Communication Technology, 2021: 1226-1230. |
29 | DAVASLIOGLU K, SAGDUYU Y E. Generative adversarial learning for spectrum sensing[C]//Proc. of the IEEE International Conference on Communication, 2018. |
30 | 彭亮, 范有臣, 胡豪杰, 等. 基于相对平均生成对抗网络的通信信号降噪方法及系统[P]. 中国: 202211387887.5, 2023-03-24. |
PENG L, FAN Y C, HU H J, et al. A communication signal denoising method and system based on relative average generative adversarial network[P]. China: 202211387887.5, 2023-03-24. | |
31 | 陈晋音, 成凯回, 郑海斌, 等. 一种基于生成式对抗网络的无线信号降噪方法[P]. 中国: 201910150001. 7, 2021-12-21. |
CHEN J Y, CHENG K H, ZHENG H B, et al. A wireless signal denoising method based on generative adversarial network[P]. China: 201910150001. 7, 2021-12-21. | |
32 | LI M X, LIU G, LI S T, et al. Radio classify generative ad-versarial networks: a semi-supervised method for modulation recognition[C]//Proc. of the IEEE 18th International Confe-rence on Communication Technology, 2018: 669-672. |
33 | 周华吉, 徐杰, 郑仕链, 等. 面向通信信号调制识别的半监督生成对抗网络框架[J]. 国防科技大学学报, 2023, 45 (6): 78- 83. |
ZHOU H J , XU J , ZHENG S L , et al. A semi-supervised gene-rative adversarial network framework for communication signal modulation recognition[J]. Journal of National University of Defense Technology, 2023, 45 (6): 78- 83. | |
34 |
TANG B , TU Y , ZHANG Z Y , et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6, 15713- 15722.
doi: 10.1109/ACCESS.2018.2815741 |
35 |
周华吉, 焦李成, 徐杰, 等. 基于生成对抗网络的数据增强方法及应用[J]. 太赫兹科学与电子信息学报, 2022, 20 (12): 1249- 1256.
doi: 10.11805/TKYDA2021271 |
ZHOU H J , JIAO L C , XU J , et al. Data augmentation method and its application based on generative adversarial networks[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20 (12): 1249- 1256.
doi: 10.11805/TKYDA2021271 |
|
36 | 秦博伟, 蒋磊, 郑万泽, 等. 基于半监督生成对抗网络的通信信号调制识别算法[J]. 空军工程大学学报(自然科学版), 2021, 22 (5): 75- 81. |
QIN B W , JIANG L , ZHEGN W Z , et al. A semi-supervised generative adversarial network-based algorithm for communication signal modulation recognition[J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22 (5): 75- 81. | |
37 | 谢智东, 谭信, 袁昕旺, 等. 基于生成对抗数据增强支持向量机的小样本信号调制识别算法[J]. 电子与信息学报, 2023, 45 (6): 2071- 2080. |
XIE Z D , TAN X , YUAN X W , et al. A small-sample signal modulation recognition algorithm based on generative adversarial data enhancement support vector machine[J]. Journal of Electronics & Information Technology, 2023, 45 (6): 2071- 2080. | |
38 | LEE S , YOON Y I , JUNG Y J . Generative adversarial network-based signal inpainting for automatic modulation classification[J]. IEEE Access, 2023, 11, 50431- 50446. |
39 |
邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44 (3): 1036- 1043.
doi: 10.12305/j.issn.1001-506X.2022.03.37 |
SHAO K , ZHU M M , WANG G Y . A modulation recognition method based on generative adversarial networks and convolutional neural networks[J]. Systems Engineering and Electro-nics, 2022, 44 (3): 1036- 1043.
doi: 10.12305/j.issn.1001-506X.2022.03.37 |
|
40 | PAN Z S , WANG S F , LI Y J . Residual attention-aided U-Net GAN and multi-instance multilabel classifier for automatic waveform recognition of overlapping LPI radar signals[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (5): 4377- 4395. |
41 |
郝云飞, 刘章孟, 郭福成, 等. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41 (11): 2619- 2624.
doi: 10.3969/j.issn.1001-506X.2019.11.27 |
HAO Y F , LIU Z M , GUO F C , et al. Open set recognition of signal modulation methods based on generative adversarial networks[J]. Systems Engineering and Electronics, 2019, 41 (11): 2619- 2624.
doi: 10.3969/j.issn.1001-506X.2019.11.27 |
|
42 |
秦博伟, 蒋磊, 许华, 等. 基于RE-GAN的调制信号开集识别算法[J]. 系统工程与电子技术, 2023, 45 (10): 3321- 3328.
doi: 10.12305/j.issn.1001-506X.2023.10.37 |
QIN B W , JIANG L , XU H , et al. An open set recognition algorithm for modulation signals based on RE-GAN[J]. Systems Engineering and Electronics, 2023, 45 (10): 3321- 3328.
doi: 10.12305/j.issn.1001-506X.2023.10.37 |
|
43 | LI T T , WEN Z Y , LONG Y , et al. The importance of expert knowledge for automatic modulation open set recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2023, 45 (11): 13730- 13748. |
44 | GONG J L , QIN X W , XU X D . Multi-task based deep learning approach for open-set wireless signal identification in ISM band[J]. IEEE Trans.on Cognitive Communications and Networking, 2022, 8 (1): 121- 135. |
45 | ZHAO C D, CHEN C Y, CAI Z C, et al. Classification of small UAVs based on auxiliary classifier Wasserstein GANs[C]//Proc. of the IEEE Global Communications Conference, 2018: 206-212. |
46 | ROY D, MUKHERJEE T, CHATTERJEE M, et al. Detection of rogue RF transmitters using generative adversarial nets[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2019. |
47 | GONG J L , XU X D , LEI Y K . Unsupervised specific emitter identification method using radio-frequency fingerprint embedded infoGAN[J]. IEEE Trans.on Information Forensics and Security, 2020, 15, 2898- 2913. |
48 | MAO C , HUANG L S , XIAO Y S , et al. Target recognition of SAR image based on CN-GAN and CNN in complex environment[J]. IEEE Access, 2021, 9, 39608- 39617. |
49 | CARR C, DANG B, METCALF J. RADGAN: applying adve-rsarial machine learning to track-before-detect radar[C]//Proc. of the IEEE Radar Conference, 2021. |
50 | JIANG W K, LI Y, TIAN Z. LPI radar signal enhancement based on generative adversarial networks under small samples[C]//Proc. of the IEEE 6th International Conference on Computer and Communications, 2020: 1171-1175. |
51 | GAO F , YANG Y , WANG J , et al. A deep convolutional ge-nerative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images[J]. Remote Sensing, 2018, 10 (6): 846. |
52 | XIONG H Q , LI J , LI Z L , et al. GPR-GAN: a ground-penetrating radar data generative adversarial network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2024, 62, 3337172. |
53 | SCHLEGL T, SEEBOCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//Proc. of the International Conference on Information Processing in Medical Imaging, 2017. |
54 | ROY D , MUKHERJEE T , CHATTERJEE M , et al. RFAL: adversarial learning for RF transmitter identification and classification[J]. IEEE Trans.on Cognitive Communications and Networking, 2020, 6 (2): 783- 801. |
55 | GKELIAS A, LEUNG K K. GAN-based detection of adversa-rial EM signal waveforms[C]//Proc. of the IEEE Military Communications Conference, 2022: 356-361. |
56 | ZHANG Q , CHEN B , ZHANG T Y , et al. Generative adversarial network-based anomaly detection and forecasting with unlabeled data for 5G vertical applications[J]. Applied Sciences, 2023, 13 (19): 10745- 10766. |
57 | ZHOU X H , XIONG J , ZHANG X C , et al. A radio anomaly detection algorithm based on modified generative adversarial network[J]. IEEE Wireless Communications Letters, 2021, 10 (7): 1552- 1556. |
58 | TOMA A , KRAYANI A , FARRUKH M , et al. AI-based abnormality detection at the PHY-layer of cognitive radio by learning generative models[J]. IEEE Trans.on Cognitive Communications and Networking, 2020, 6 (1): 21- 34. |
59 | WANG X Y , YANG J J , ZHANG L , et al. Spectrum monitoring of radio digital video broadcasting based on an improved generative adversarial network[J]. Radio Science, 2021, 56 (8): 1- 13. |
60 |
赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43 (4): 1080- 1088.
doi: 10.12305/j.issn.1001-506X.2021.04.26 |
ZHAO F , JIN H . GAN-based communication jamming waveform generation technology[J]. Systems Engineering and Electronics, 2021, 43 (4): 1080- 1088.
doi: 10.12305/j.issn.1001-506X.2021.04.26 |
|
61 | 冯奇, 张君毅, 陈丽, 等. 基于DRAGAN的通信信号波形生成技术[J]. 河北工业科技, 2022, 39 (1): 2- 8. |
FENG Q , ZHANG J Y , CHEN L , et al. Communication signal waveform generation technology based on DRAGAN[J]. Hebei Industrial Science and Technology, 2022, 39 (1): 2- 8. | |
62 | 陈昌美, 李艳斌, 杨鸿杰, 等. 基于条件生成对抗网络的信号生成技术[J]. 信息技术, 2023 (10): 136- 146. |
CHEN C M , LI Y B , YANG H J , et al. Signal generation techno-logy based on conditional generative adversarial networks[J]. Information Technology, 2023 (10): 136- 146. | |
63 | 陆彦辉, 柳寒, 李航, 等. 基于多鉴别器生成对抗网络的时间序列生成模型[J]. 通信学报, 2022, 43 (10): 167- 176. |
LU Y H , LIU H , LI H , et al. Time series generation model based on multi-discriminator generative adversarial networks[J]. Journal of Communications, 2022, 43 (10): 167- 176. | |
64 |
薛丽莎, 葛瑞星, 朱宇轩, 等. 基于SABEGAN的通信干扰信号生成与效能分析[J]. 系统工程与电子技术, 2024, 46 (6): 2155- 2163.
doi: 10.12305/j.issn.1001-506X.2024.06.34 |
XUE L S , GE R X , ZHU Y X , et al. Communication jamming signal generation and efficacy analysis based on SABEGAN[J]. Systems Engineering and Electronics, 2024, 46 (6): 2155- 2163.
doi: 10.12305/j.issn.1001-506X.2024.06.34 |
|
65 | OYAMADA K, KAMEOKA H, KANEKO T, et al. Generative adversarial network-based approach to signal reconstruction from magnitude spectrogram[C]//Proc. of the 26th European Signal Processing Conference, 2018: 2514-2518. |
66 | ROY T, O'SHEA T, WEST N. Generative adversarial radio spectrum networks[C]//Proc. of the ACM Workshop on Wireless Security and Machine Learning, 2019: 12-15. |
67 | TRUONG T, YANUSHKEVICH S. Generative adversarial network for radar signal generation[C]//Proc. of the International Joint Conference on Neural Networks, 2019. |
68 | DEPREM Z, ĢETIN A E. High resolution time-frequency generation with generative adversarial networks[EB/OL]. [2024-02-08]. http://arxiv.org/abs/2106.00668. |
69 | SHI Y, DAVASLIOGLU K, SAGDUYU Y E. Generative adversarial network for wireless signal spoofing[C]//Proc. of the ACM Workshop on Wireless Security and Machine Learning, 2019: 55-60. |
70 | SHI Y , DAVASLIOGLU K , SAGDUYU Y E . Generative adversarial network in the air: deep adversarial learning for wireless signal spoofing[J]. IEEE Trans.on Cognitive Communications and Networking, 2021, 7 (1): 294- 303. |
71 | FAN W W, ZHOU F, TIAN T. A deceptive jamming template synthesis method for SAR using generative adversarial nets[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 6926-6929. |
72 | LANG S N , LI G Q , LIU Y , et al. A GAN-based augmentation scheme for SAR deceptive jamming templates with sha-dows[J]. Remote Sensing, 2023, 15 (19): 4756. |
73 | KINNUNEN T, SAHIDULLAH M, DELGADO H, et al. The ASV spoof 2017 challenge: assessing the limits of replay spoofing attack detection[C]//Proc. of the 18th Annual Conference of the International Speech Communication Association, 2017. |
74 | 刘永贵, 胡国平. 基于DRFM的遗传算法干扰技术研究[J]. 无线电工程, 2009, 39 (6): 31- 33. |
LIU Y G , HU G P . Study on genetic algorithm jamming technology based on DRFM[J]. Radio Engineering, 2009, 39 (6): 31- 33. |
[1] | 薛丽莎, 葛瑞星, 朱宇轩, 鲍雁飞. 基于SABEGAN的通信干扰信号生成与效能分析[J]. 系统工程与电子技术, 2024, 46(6): 2155-2163. |
[2] | 汤寓麟, 王黎明, 余德荧, 李厚朴, 刘敏, 张卫东. 基于CSLS-CycleGAN的侧扫声纳水下目标图像样本扩增法[J]. 系统工程与电子技术, 2024, 46(5): 1514-1524. |
[3] | 马兰, 孟诗君, 吴志军. 基于BERT与生成对抗的民航陆空通话意图挖掘[J]. 系统工程与电子技术, 2024, 46(2): 740-750. |
[4] | 秦湖程, 黄炎焱, 陈天德, 张寒. 基于PPO算法的集群多目标火力规划方法[J]. 系统工程与电子技术, 2024, 46(11): 3764-3773. |
[5] | 王慧赋, 梅明飞, 齐亮, 柴恒, 陶诗飞. 基于二值神经网络的辐射源信号识别方法[J]. 系统工程与电子技术, 2024, 46(11): 3912-3919. |
[6] | 聂千祁, 沙明辉, 朱应申. 基于改进残差神经网络的雷达信号识别方法[J]. 系统工程与电子技术, 2024, 46(10): 3356-3364. |
[7] | 庞世燕, 郝京京, 邢立宁, 谭旭. 融合域自适应和弱监督策略的遥感影像建筑物提取算法[J]. 系统工程与电子技术, 2023, 45(6): 1616-1623. |
[8] | 陈丽, 方梓涵, 梅立泉. 基于GAN的直扩信号生成算法[J]. 系统工程与电子技术, 2023, 45(5): 1544-1552. |
[9] | 曹鹏宇, 杨承志, 陈泽盛, 王露, 石礼盟. 基于深度残差收缩注意力网络的雷达信号识别方法[J]. 系统工程与电子技术, 2023, 45(3): 717-725. |
[10] | 曾浩然, 冯蕴雯, 路成, 潘维煌. 基于改进生成对抗网络的国产民机航材消耗预测方法[J]. 系统工程与电子技术, 2023, 45(10): 3132-3138. |
[11] | 秦博伟, 蒋磊, 许华, 牛伟宇. 基于RE-GAN的调制信号开集识别算法[J]. 系统工程与电子技术, 2023, 45(10): 3321-3328. |
[12] | 刘戎翔, 吴琳, 谢智歌, 刘虹麟. 基于生成对抗网络的防空体系态势辅助分析[J]. 系统工程与电子技术, 2022, 44(8): 2522-2529. |
[13] | 徐平亮, 崔亚奇, 熊伟, 熊振宇, 顾祥岐. 生成式中断航迹接续关联方法[J]. 系统工程与电子技术, 2022, 44(5): 1543-1552. |
[14] | 韩明仁, 王玉峰. 基于强化学习的全电推进卫星变轨优化方法[J]. 系统工程与电子技术, 2022, 44(5): 1652-1661. |
[15] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||