1 |
张国柱, 黄可生, 姜文利, 等. 基于信号包络的辐射源细微特征提取方法[J]. 系统工程与电子技术, 2006, 28 (6): 795- 797.
|
|
ZHANG G Z , HUANG K S , JIANG W L , et al. Emitter feature extract method based on signal envelope[J]. Systems Engineering and Electronics, 2006, 28 (6): 795- 797.
|
2 |
YILDIRIM A . Method for estimating the central frequency of phase-coded radar signals[J]. IET Signal Processing, 2016, 10 (9): 1073- 1081.
doi: 10.1049/iet-spr.2016.0237
|
3 |
王国涛, 姜秋喜, 刘方正, 等. 基于频谱和瞬时自相关的雷达信号调制识别[J]. 兵器装备工程学报, 2022, 43 (1): 200- 205.
|
|
WANG G T , JIANG Q X , LIU F Z , et al. Radar signal modulation recognition based on spectrum and instaneous autocorrelation[J]. Journal of Ordnance Equipment Engineering, 2022, 43 (1): 200- 205.
|
4 |
AMIN V S, ZHANG Y D, HIMED B. Improved instaneous frequency estimation of multi-component FM signals[C]//Proc. of the IEEE Radar Conference, 2019.
|
5 |
ZHANG M , LIU L T , DIAO M . LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682.
doi: 10.3390/s16101682
|
6 |
HELBERT S , KERISTA S , SYAHRUL H , et al. Time frequency signal classification using continuous wavelet transformation[J]. IOP Conference Series Materials Science and Engineering, 2020, 851 (1): 12045- 12051.
doi: 10.1088/1757-899X/851/1/012045
|
7 |
QU Q Z, WANG Y L, DU Q L. Automatic modulation recognition for radar signals based on ACSE networks[C]//Proc. of the CIE International Conference on Radar, 2021: 1104-1107.
|
8 |
WANG G M, CHEN S W, HU X, et al. Radar emitter sorting and recognition based on time-frequency image union feature[C]//Proc. of the IEEE 4th International Conference on Signal and Image Processing, 2019: 165-170.
|
9 |
HAN L H , HUANG G M . Intrapulse modulation recognition of radar signals based on spectrum analysis[J]. Electronic Information Warfare Technology, 2011, 26 (3): 29- 32.
|
10 |
孟祥豪, 赵海旭, 梁言. 一种基于对角积分双谱的复合调制LPI雷达信号识别方法[J]. 航天电子对抗, 2021, 37 (5): 13-18, 24.
|
|
MENG X H , ZHAO H X , LIANG Y . A compound modulated LPI radar signal recognition method based on diagonal integral bispectrum[J]. Aerospace Electronic Warfare, 2021, 37 (5): 13-18, 24.
|
11 |
刘赢, 田润澜, 王晓峰. 基于深层卷积神经网络和双谱特征的雷达信号识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 1998- 2005.
|
|
LIU Y , TIAN R L , WANG X F . Radar signal recognition method based on deep convolutional neural network and bispectrum feature[J]. Systems Engineering and Electronics, 2019, 41 (9): 1998- 2005.
|
12 |
MI X P , CHEN X H , LIU Q , et al. Radar signals modulation recognition based on bispectrum feature processing[J]. Journal of Physics: Conference Series, 2021, 1971 (1): 12099- 12110.
doi: 10.1088/1742-6596/1971/1/012099
|
13 |
YUAN X Y , HE P , ZHU Q L , et al. Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824.
doi: 10.1109/TNNLS.2018.2886017
|
14 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022
|
15 |
XU Z Y . Research on deep learning in natural language processing[J]. Advances in Computer and Communication, 2023, 4 (3): 196- 200.
|
16 |
HU K J , LI H Y , XU S F , et al. Nonlinear signal classification based on wavelet transform and deep belief network[J]. Journal of Physics: Conference Series, 2021, 1948 (1): 12029- 12034.
|
17 |
ZHOU Z W , HUANG G M , CHEN H Y , et al. Automatic radar waveform recognition based on deep convolutional denoising auto-encoders[J]. Circuits, Systems, and Signal Processing, 2018, 37 (9): 4043- 4048.
|
18 |
LIU L T , LI X Y . Radar signal recognition based on triplet convolutional neural network[J]. EURASIP Journal on Advances in Signal Processing, 2021, 112.
|
19 |
杨洁, 张欢. 基于改进型AlexNet的LPI雷达信号识别[J]. 现代电子技术, 2020, 43 (5): 57- 60.
|
|
YANG J , ZHANG H . LPI radar signal recognition based on improved AlexNet[J]. Modern Electronics Technique, 2020, 43 (5): 57- 60.
|
20 |
QIN X, ZHA X, HUANG J, et al. Radar waveform recognition based on deep residual network[C]//Proc. of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019: 892-896.
|
21 |
秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462.
|
|
QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462.
|
22 |
QU Z Y , MAO X J , DENG Z A . Radar signal intra-pulse mo-dulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6, 43874- 43884.
|
23 |
HUANG D K , YAN X P , HAO X H , et al. Low SNR multi-emitter signal sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep learning model[J]. Sensors, 2022, 22 (20): 7783- 7805.
|
24 |
肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43 (8): 2300- 2307.
|
|
XIAO Y H , WANG L , GUO Y X . Radar signal modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics and Information Technology, 2021, 43 (8): 2300- 2307.
|
25 |
LI J , ZHANG H Q , OU J P , et al. A radar signal recognition approach via ⅡF-Net deep learning models[J]. Computational Intelligence and Neuroscience, 2020, 8858588.
|
26 |
SI W J , WAN C X , DENG Z A . An efficient deep convolutional neural network with features fusion for radar signal recognition[J]. Multimedia Tools and Applications, 2023, 82, 2871- 2885.
|
27 |
QUAN D Y , TANG Z Y , WANG X F , et al. LPI radar signal recognition based on dual-channel CNN and feature fusion[J]. Symmetry, 2022, 14 (3): 570- 582.
|
28 |
ZHANG X L , ZHANG J Z , LUO T Z , et al. Radar signal intrapulse modulation recognition based on a denoising-guided disentangled network[J]. Remote Sensing, 2022, 14 (5): 1252- 1266.
|
29 |
LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162.
|
30 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|