1 |
CAI J H , CEN J , WANG H K , et al. Real-time collision-free grasp pose detection with geometry-aware refinement using high-resolution volume[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 1888- 1895.
doi: 10.1109/LRA.2022.3142424
|
2 |
CHENG H , WANG Y Y , MENG M Q H . A robot grasping system with single-stage anchor-free deep grasp detector[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 5009712.
|
3 |
WEN H T, YAN J H, PENG W L, et al. TransGrasp: grasp pose estimation of a category of objects by transferring grasps from only one labeled instance[C]//Proc. of the 17th European Conference, 2022: 445-461.
|
4 |
WEI H , PAN S C , MA G , et al. Vision-guided hand-eye coordination for robotic grasping and its application in tangram puzzles[J]. Artificial Intelligence, 2021, 2 (2): 209- 228.
|
5 |
LENZ I , LEE H , SAXENA A . Deep learning for detecting robotic grasps[J]. The International Journal of Robotics Research, 2015, 34 (4/5): 705- 724.
|
6 |
MORRISON D , CORKE P , LEITNER J . Learning robust, real-time, reactive robotic grasping[J]. The International Journal of Robotics Research, 2020, 39 (2/3): 183- 201.
|
7 |
LIANG H Z, MA X J, LI S, et al. Pointnetgpd: detecting grasp configurations from point sets[C]//Proc. of the International Conference on Robotics and Automation, 2019: 3629-3635.
|
8 |
ZHANG L Z , WU D M . A single target grasp detection network based on convolutional neural network[J]. Computational Intelligence and Neuroscience, 2021, (5): 5512728.
|
9 |
CHU F J , XU R N , VELA P A . Real-world multi-object, multi-grasp detection[J]. IEEE Robotics and Automation Letters, 2018, 3 (4): 3355- 3362.
doi: 10.1109/LRA.2018.2852777
|
10 |
AINETTER S, FRAUNDORFER F. End-to-end trainable deep neural network for robotic grasp detection and semantic segmentation from RGB[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2021: 13452-13458.
|
11 |
陈丹, 林清泉. 基于级联式Faster RCNN的三维目标最优抓取方法研究[J]. 仪器仪表学报, 2019, 40 (4): 229- 237.
|
|
CHEN D , LIN Q Q . Research on 3D object optimal grasping method based on cascaded Faster RCNN[J]. Chinese Journal of Scientific Instrument, 2019, 40 (4): 229- 237.
|
12 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28, 91- 99.
|
13 |
孟月波, 黄琪, 韩九强, 等. 基于两阶段的机器人动态多物品定位抓取方法[J]. 激光与光电子学进展, 2023, 60 (6): 288- 297.
|
|
MENG Y B , HUANG Q , HAN J Q , et al. Robot dynamic object positioning and grasping method based on two stages[J]. Laser & Optoelectronics Progress, 2023, 60 (6): 288- 297.
|
14 |
安广琳, 李宗刚, 杜亚江, 等. 基于深度学习的多工件抓取点定位方法[J]. 激光与光电子学进展, 2023, 60 (12): 311- 321.
|
|
AN G L , LI Z G , DU Y J , et al. Research on multiple workpiece grasping point localization method based on deep learning[J]. Laser & Optoelectronics Progress, 2023, 60 (12): 311- 321.
|
15 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.
|
16 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proc. of the European Conference on Computer Vision, 2018: 801-818.
|
17 |
HE K M , ZHANG X Y , REN S R , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
18 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Cision and Pattern Recognition, 2018: 8759-8768.
|
19 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
20 |
HAN K, WANG Y H, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
|
21 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
|
22 |
YANG L X, ZHANG R Y, LI L D, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//Proc. of the International Conference on Machine Learning, 2021: 11863-11874.
|
23 |
LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[C]//Proc. of the International Conference on Computer Vision and Pattern Recognition, 2019.
|
24 |
YANG X, YAN J C, FENG Z M, et al. R3det: refined single-stage detector with feature refinement for rotating object[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171.
|
25 |
YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 8232-8241.
|
26 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 618-626.
|
27 |
HAN J M , DING J , LI J , et al. Align deep features for oriented object detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 1- 11.
|
28 |
YANG X, ZHANG G F, LI W T, et al. H2RBox: horizontal box annotation is all you need for oriented object detection[C]//Proc. of the International Conference on Learning Representations, 2023.
|
29 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
30 |
李明, 鹿朋, 朱龙, 等. 基于RGB-D融合的密集遮挡抓取检测[J]. 控制与决策, 2023, 38 (10): 2867- 2874.
|
|
LI M , LU P , ZHU L , et al. Densely occluded grasping objects detection based on RGB-D fusion[J]. Control and Decision, 2023, 38 (10): 2867- 2874.
|