| 1 | 
																						 
											  刘洋, 康健, 管海燕, 等.  基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25 (2): 396- 408. 
											 											 | 
										
																													
																						 | 
																						 
											   LIU Y ,  KANG J ,  GUAN H Y , et al.  Road extraction model of high-resolution remote sensing images based on dual-attention residual network[J]. Journal of Geo-Information Science, 2023, 25 (2): 396- 408. 
											 											 | 
										
																													
																						| 2 | 
																						 
											  梁茜亚, 王卷乐, 李朋飞, 等.  基于高分一号(GF-1)影像的蒙古高原干旱半干旱地区自然道路提取研究——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2022, 35 (2): 122- 131. 
											 											 | 
										
																													
																						 | 
																						 
											   LIANG Q Y ,  WANG J L ,  LI P F , et al.  Research on natural roads extraction in arid and semiarid regions of the Mongolian Plateau based on GF-1 images-take the Gurvantes Soum, Mongolia as an example[J]. Remote Sensing for Natural Resources, 2022, 35 (2): 122- 131. 
											 											 | 
										
																													
																						| 3 | 
																						 
											   DAI L ,  ZHANG G Y ,  ZHANG R T .  RADANet: road augmented deformable attention network for road extraction from complex high-resolution remote-sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5602213.
											 											 | 
										
																													
																						| 4 | 
																						 
											   ZHANG X ,  ZHANG C K ,  LI H M , et al.  A road extraction method based on high resolution remote sensing image[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 671- 676.
											 											 | 
										
																													
																						| 5 | 
																						 
											   LIU L Y ,  DONG Y Y ,  HUANG W J , et al.  Enhanced regional monitoring of wheat powdery mildew based on an instance-based transfer learning method[J]. Remote Sensing, 2019, 11 (3): 298. 
											 												 
																									doi: 10.3390/rs11030298
																																			 											 | 
										
																													
																						| 6 | 
																						 
											 MEGHANA I, MEGHANA J D N V L, JAYARAMAN R. Smart attendance management system using radio frequency identification[C]//Proc. of the International Conference on Communication and Signal Processing, 2020: 1045-1049.
											 											 | 
										
																													
																						| 7 | 
																						 
											  戴激光, 王杨, 杜阳, 等.  光学遥感影像道路提取的方法综述[J]. 遥感学报, 2020, 24 (7): 804- 823. 
											 											 | 
										
																													
																						 | 
																						 
											   DAI J G ,  WANG Y ,  DU Y , et al.  Development and prospect of road extraction method for optical remote sensing image[J]. National Remote Sensing Bulletin, 2020, 24 (7): 804- 823. 
											 											 | 
										
																													
																						| 8 | 
																						 
											   DAI J G ,  MA R C ,  GONG L T , et al.  A model-driven-to-sample-driven method for rural road extraction[J]. Remote Sensing, 2021, 13 (8): 1417. 
											 												 
																									doi: 10.3390/rs13081417
																																			 											 | 
										
																													
																						| 9 | 
																						 
											   LIN X G ,  ZHANG R ,  SHEN J .  A template-matching based approach for extraction of roads from very high-resolution remotely sensed imagery[J]. International Journal of Image and Data Fusion, 2012, 3 (2): 149- 168. 
											 												 
																									doi: 10.1080/19479832.2011.642413
																																			 											 | 
										
																													
																						| 10 | 
																						 
											   TAN H ,  SHEN Z M ,  DAI J G .  Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features[J]. ISPRS International Journal of Geo-Information, 2021, 10 (11): 754. 
											 												 
																									doi: 10.3390/ijgi10110754
																																			 											 | 
										
																													
																						| 11 | 
																						 
											   YANG K L ,  CUI W H ,  SHI S , et al.  Semi-automatic method of extracting road networks from high-resolution remote-sensing images[J]. Applied Sciences, 2022, 12 (9): 4705. 
											 												 
																									doi: 10.3390/app12094705
																																			 											 | 
										
																													
																						| 12 | 
																						 
											   GUO Q ,  WANG Z P .  A self-supervised learning framework for road centerline extraction from high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4451- 4461. 
											 												 
																									doi: 10.1109/JSTARS.2020.3014242
																																			 											 | 
										
																													
																						| 13 | 
																						 
											   LI M M ,  STEIN A ,  BIJKER W , et al.  Region-based urban road extraction from VHR satellite images using binary partition tree[J]. International Journal of Applied Earth Observation and Geo-information, 2016, 44 (9): 217- 225.
											 											 | 
										
																													
																						| 14 | 
																						 
											   LIN X G ,  XIE W H ,  ZHANG L B , et al.  Semi-automatic road extraction from high resolution satellite images by template matching using Kullback-Leibler divergence as a similarity measure[J]. International Journal of Image and Data Fusion, 2022, 13 (4): 316- 336. 
											 												 
																									doi: 10.1080/19479832.2022.2121767
																																			 											 | 
										
																													
																						| 15 | 
																						 
											  房玉品, 王小鹏, 李新娜.  基于自适应形态学的遥感图像道路提取[J]. 激光与光电子学进展, 2022, 59 (16): 135- 142. 
											 											 | 
										
																													
																						 | 
																						 
											   FANG Y P ,  WANG X P ,  LI X N .  Road extraction from remote sensing images based on adaptive morphology[J]. Laser & Optoelectronics Progress, 2022, 59 (16): 135- 142. 
											 											 | 
										
																													
																						| 16 | 
																						 
											  林鹏, 阮仁宗, 王玉强, 等.  一种基于面向对象的城镇道路自动提取方法研究[J]. 地理与地理信息科学, 2016, 32 (1): 42. 
											 											 | 
										
																													
																						 | 
																						 
											   LIN P ,  RUAN R Z ,  WANG Y Q , et al.  Research on extraction of road based on object oriented in an urban context[J]. Geography and Geo-Information Science, 2016, 32 (1): 42. 
											 											 | 
										
																													
																						| 17 | 
																						 
											   ABDOLLAHI A ,  PRADHAN B ,  ALAMRI A .  VNet: an end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data[J]. IEEE Access, 2020, 8, 179424- 179436. 
											 												 
																									doi: 10.1109/ACCESS.2020.3026658
																																			 											 | 
										
																													
																						| 18 | 
																						 
											   WANG Y S ,  SEO J H ,  JEON T Y .  NL-LinkNet: toward lighter but more accurate road extraction with nonlocal operations[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3000105.
											 											 | 
										
																													
																						| 19 | 
																						 
											   DING L ,  BRUZZONE L .  DiResNet: direction-aware residual network for road extraction in VHR remote sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (12): 10243- 10254. 
											 												 
																									doi: 10.1109/TGRS.2020.3034011
																																			 											 | 
										
																													
																						| 20 | 
																						 
											 RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
											 											 | 
										
																													
																						| 21 | 
																						 
											   ZHOU Z W ,  RAHMAN S M M ,  TAJBAKHSH N , et al.  UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans.on Medical Imaging, 2019, 39 (6): 1856- 1867.
											 											 | 
										
																													
																						| 22 | 
																						 
											 ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239.
											 											 | 
										
																													
																						| 23 | 
																						 
											 CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proc. of the Europeon Conference on Computer Vision, 2018: 833-851.
											 											 | 
										
																													
																						| 24 | 
																						 
											  赵凌虎, 袁希平, 甘淑, 等.  改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35 (1): 107- 114. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHAO L H ,  YUAN X P ,  GAN S , et al.  An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35 (1): 107- 114. 
											 											 | 
										
																													
																						| 25 | 
																						 
											 SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
											 											 | 
										
																													
																						| 26 | 
																						 
											  龙伊娜, 谷玉海, 吴文昊, 等.  基于改进D-Linknet的高分遥感影像道路提取方法[J]. 激光杂志, 2023, 44 (5): 162- 168. 
											 											 | 
										
																													
																						 | 
																						 
											   LONG Y N ,  GU Y H ,  WU W H , et al.  Road extraction method of high resolution remote sensing image based on improved D-Linknet[J]. Laser Journal, 2023, 44 (5): 162- 168. 
											 											 | 
										
																													
																						| 27 | 
																						 
											 GIUSTI A, CIREȘAN D, MASCI J, et al. Fast image scanning with deep max-pooling convolutional neural networks[C]//Proc. of the IEEE International Conference on Image Processing, 2013.
											 											 | 
										
																													
																						| 28 | 
																						 
											   WANG J D ,  KE S ,  CHENG T H , et al.  Deep high-resolution representation learning for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 33 (10): 3349- 3364.
											 											 | 
										
																													
																						| 29 | 
																						 
											 WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
											 											 | 
										
																													
																						| 30 | 
																						 
											 SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proc. of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5686-5696.
											 											 | 
										
																													
																						| 31 | 
																						 
											 WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19.
											 											 | 
										
																													
																						| 32 | 
																						 
											 JADON S. A survey of loss functions for semantic segmentation[C]//Proc. of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, 2020.
											 											 | 
										
																													
																						| 33 | 
																						 
											 MA Y D, LIU Q, QIAN Z B. Automated image segmentation using improved PCNN model based on cross-entropy[C]//Proc. of the International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004: 743-746.
											 											 | 
										
																													
																						| 34 | 
																						 
											 SUDRE C H, LI W, VERCAUTEREN T, et al. Generalised dice overlap as a deep learning loss function for highly unba-lanced segmentations[C]//Proc. of the International Workshop on Deep Learning in Medical Image Analysis, 2017: 240-248.
											 											 | 
										
																													
																						| 35 | 
																						 
											   ZHU Q Q ,  ZHANG Y N ,  WANG L Z , et al.  A global context-aware and batch-independent network for road extraction from VHR satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175 (12): 353- 365.
											 											 | 
										
																													
																						| 36 | 
																						 
											   SHELHAMER E ,  LONG J ,  DARRELL T .  Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 39 (4): 640- 651.
											 											 | 
										
																													
																						| 37 | 
																						 
											 ZHOU L C, ZHANG C, WU M. D-LinkNet: linkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018: 192-1924.
											 											 | 
										
																													
																						| 38 | 
																						 
											   TIELEMAN T ,  HINTON G .  Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4 (2): 26- 31.
											 											 |