1 |
MAURER N , GRAUPL T , BELLIDO-MANGANELL M A , et al. Flight trial demonstration of secure GBAS via the L-band digital aeronautical communications system (LDACS)[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36 (4): 8- 17.
doi: 10.1109/MAES.2021.3052318
|
2 |
NEJI N , LACERDA R D , AZOULAY A , et al. Survey on the future aeronautical communication system and its development for continental communications[J]. IEEE Trans.on Vehicular Technology, 2013, 62 (1): 182- 191.
doi: 10.1109/TVT.2012.2207138
|
3 |
洪观. 基于压缩感知的L-DACS1宽带频谱感知算法研究[D]. 重庆: 重庆大学, 2017.
|
|
HONG G. Study on broadband spectrum sensing algorithm based on compressed sensing of L-DACS1[D]. Chongqing: Chongqing University, 2017.
|
4 |
ABD-ELATY E , ZEKRY A , EL-AGOOZ S , et al. Cognitive radio techniques for utilizing the primary L-band distance mea-suring equipment for aeronautical communications[J]. IEEE Access, 2020, 8, 124812- 124823.
doi: 10.1109/ACCESS.2020.3007741
|
5 |
KOPYTO D, LINDNER S, SCHULZ L, et al. Deep learning-based dynamic spectrum access for coexistence of aeronautical communication systems[C]//Proc. of the IEEE 96th Vehicular Technology Conference, 2022.
|
6 |
SHREEJITH S , MATHEW L K , PRASAD V A , et al. Effi cient spectrum sensing for aeronautical LDACS using low-power correlators[J]. IEEE Trans.on Very Large Scale Integration (VLSI) Systems, 2018, 26 (6): 1183- 1191.
doi: 10.1109/TVLSI.2018.2806624
|
7 |
MATHEW L K, VINOD A P, MADHUKUMAR A S. A cyclic prefix assisted spectrum sensing method for aeronautical communic ation systems[C]//Proc. of the IEEE International Symposium on Circuits and Systems, 2019.
|
8 |
XIE J D , FANG J , LIU C , et al. Deep learning-based spectrum sensing in cognitive radio: a CNN-LSTM approach[J]. IEEE Communications Letters, 2020, 24 (10): 2196- 2200.
doi: 10.1109/LCOMM.2020.3002073
|
9 |
LIU C , WANG J , LIU X M , et al. Deep CM-CNN for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (10): 2306- 2321.
doi: 10.1109/JSAC.2019.2933892
|
10 |
SSKI K , LEDZINSKI D . ECG signal classification using deep learning techniques based on the PTB-XL dataset[J]. Entropy, 2021, 23 (9): 1121.
doi: 10.3390/e23091121
|
11 |
SINDI H , NOUR M , RAWA M , et al. A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification[J]. Expert Systems with Applications, 2021, 174, 114785.
doi: 10.1016/j.eswa.2021.114785
|
12 |
SHAH P K, SULTANE D, SINGH P. Spectrum sensing mechanism for congnitive radio using deep learning[C]//Proc. of the International Conference on Artificial Intelligence in Information and Communication, 2023.
|
13 |
LIN Y , TUYA T , DOU Z , et al. Contour stella image and deep learning for signal recognition in the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2021, 7 (1): 34- 46.
doi: 10.1109/TCCN.2020.3024610
|
14 |
WANG Q , SU B , WANG C X , et al. ConvLSTM based spectrum sensing at very low SNR[J]. IEEE Wireless Communications Letters, 2023, 12 (6): 967- 971.
doi: 10.1109/LWC.2023.3254048
|
15 |
ZHANG Z F , LUO H , WANG C , et al. Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (11): 3521- 13531.
|
16 |
KIM S H , KIM J W , NWADIUGWU W P , et al. Deep learn ing-based robust automatic modulation classification for cognitive radio networks[J]. IEEE Access, 2021, 9, 92386- 92393.
doi: 10.1109/ACCESS.2021.3091421
|
17 |
TEKBIYIK K , AKBUNAR O , EKTI A R , et al. Spectrum sensing and signal identification with deep learning based on spectral correlation function[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (10): 10514- 10527.
doi: 10.1109/TVT.2021.3109236
|
18 |
RAZA A , MEHMOOD A , ULLAH S , et al. Heartbeat sound signal classification using deep learning[J]. Sensors, 2019, 19 (21): 4819.
doi: 10.3390/s19214819
|
19 |
ALTAHERI H , MUHAMMAD G , ALSULAIMAN M , et al. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35, 14681- 14722.
doi: 10.1007/s00521-021-06352-5
|
20 |
束学渊, 汪立新. 联合循环平稳特征PCA与XGBoost的频谱感知[J]. 计算机应用与软件, 2020, 37 (4): 114-118, 126.
doi: 10.3969/j.issn.1000-386x.2020.04.019
|
|
SHU X Y , WANG L X . Spectrum sensing by combining cyclostationary features PCA with XGBoost[J]. Computer Applications and Software, 2020, 37 (4): 114-118, 126.
doi: 10.3969/j.issn.1000-386x.2020.04.019
|
21 |
WANG D , LIN M Y , ZHANG X X , et al. Automatic modulation classification based on CNN-Transformer graph neural network[J]. Sensors, 2023, 23 (16): 7281.
doi: 10.3390/s23167281
|
22 |
葛战, 伍警, 李兵, 等. 基于循环谱和深度神经网络的调制识别算法[J]. 无线电工程, 2022, 52 (10): 1718- 1725.
doi: 10.3969/j.issn.1003-3106.2022.10.005
|
|
GE Z , WU J , LI B , et al. Modulation recognition based on cyclic spectrum and deep neural network[J]. Radio Engineering, 2022, 52 (10): 1718- 1725.
doi: 10.3969/j.issn.1003-3106.2022.10.005
|
23 |
李冬霞, 李思, 刘海涛. 载波偏置测距仪信号的循环平稳特性[J]. 系统工程与电子技术, 2016, 38 (8): 1935- 1938.
|
|
LI D X , LI S , LIU H T . Cyclostationarity of carrier offset distance measure equipment signals[J]. Systems Engineering and Electronics, 2016, 38 (8): 1935- 1938.
|
24 |
张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 国防工业出版社, 1998.
|
|
ZHANG X D , BAO Z . Analysis and processing of non-stationary signals[M]. Beijing: National Defence Industry Press, 1998.
|
25 |
GARDNER W A . Introduction to random process with application to signals and systems[M]. New York: Macmillan, 1989.
|
26 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
27 |
陈月, 张希, 艾文宝. 基于残差神经网络的频谱感知算法[J]. 现代电子技术, 2022, 45 (7): 1- 5.
|
|
CHEN Y , ZHANG X , AI W B . Spectrum sensing algorithm based on residual neural network[J]. Modern Electronic Technology, 2022, 45 (7): 1- 5.
|
28 |
EUROPEAN UNION, EUROCONTROL. PJ. 14-W2-60 TRL6 final LDACS A/G specification[EB/OL]. [2023-07-08]. https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf.
|
29 |
TAN P S , LIM K M , TAN C H , et al. Pre-trained DenseNet-121 with multilayer perceptron for acoustic event classification[J]. IAENG International Journal of Computer Science, 2023, 50 (1): 51- 62.
|
30 |
FENG S , ZHAO L P , SHI H Y , et al. One-dimensional VGGNet for high-dimensional data[J]. Applied Soft Computing, 2023, 135, 1568- 4946.
|