| 1 | MAURER N ,  GRAUPL T ,  BELLIDO-MANGANELL M A , et al.  Flight trial demonstration of secure GBAS via the L-band digital aeronautical communications system (LDACS)[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36 (4): 8- 17. doi: 10.1109/MAES.2021.3052318
 | 
																													
																						| 2 | NEJI N ,  LACERDA R D ,  AZOULAY A , et al.  Survey on the future aeronautical communication system and its development for continental communications[J]. IEEE Trans.on Vehicular Technology, 2013, 62 (1): 182- 191. doi: 10.1109/TVT.2012.2207138
 | 
																													
																						| 3 | 洪观. 基于压缩感知的L-DACS1宽带频谱感知算法研究[D]. 重庆: 重庆大学, 2017. | 
																													
																						|  | HONG G. Study on broadband spectrum sensing algorithm based on compressed sensing of L-DACS1[D]. Chongqing: Chongqing University, 2017. | 
																													
																						| 4 | ABD-ELATY E ,  ZEKRY A ,  EL-AGOOZ S , et al.  Cognitive radio techniques for utilizing the primary L-band distance mea-suring equipment for aeronautical communications[J]. IEEE Access, 2020, 8, 124812- 124823. doi: 10.1109/ACCESS.2020.3007741
 | 
																													
																						| 5 | KOPYTO D, LINDNER S, SCHULZ L, et al. Deep learning-based dynamic spectrum access for coexistence of aeronautical communication systems[C]//Proc. of the IEEE 96th Vehicular Technology Conference, 2022. | 
																													
																						| 6 | SHREEJITH S ,  MATHEW L K ,  PRASAD V A , et al.  Effi cient spectrum sensing for aeronautical LDACS using low-power correlators[J]. IEEE Trans.on Very Large Scale Integration (VLSI) Systems, 2018, 26 (6): 1183- 1191. doi: 10.1109/TVLSI.2018.2806624
 | 
																													
																						| 7 | MATHEW L K, VINOD A P, MADHUKUMAR A S. A cyclic prefix assisted spectrum sensing method for aeronautical communic ation systems[C]//Proc. of the IEEE International Symposium on Circuits and Systems, 2019. | 
																													
																						| 8 | XIE J D ,  FANG J ,  LIU C , et al.  Deep learning-based spectrum sensing in cognitive radio: a CNN-LSTM approach[J]. IEEE Communications Letters, 2020, 24 (10): 2196- 2200. doi: 10.1109/LCOMM.2020.3002073
 | 
																													
																						| 9 | LIU C ,  WANG J ,  LIU X M , et al.  Deep CM-CNN for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (10): 2306- 2321. doi: 10.1109/JSAC.2019.2933892
 | 
																													
																						| 10 | SSKI K ,  LEDZINSKI D .  ECG signal classification using deep learning techniques based on the PTB-XL dataset[J]. Entropy, 2021, 23 (9): 1121. doi: 10.3390/e23091121
 | 
																													
																						| 11 | SINDI H ,  NOUR M ,  RAWA M , et al.  A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification[J]. Expert Systems with Applications, 2021, 174, 114785. doi: 10.1016/j.eswa.2021.114785
 | 
																													
																						| 12 | SHAH P K, SULTANE D, SINGH P. Spectrum sensing mechanism for congnitive radio using deep learning[C]//Proc. of the International Conference on Artificial Intelligence in Information and Communication, 2023. | 
																													
																						| 13 | LIN Y ,  TUYA T ,  DOU Z , et al.  Contour stella image and deep learning for signal recognition in the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2021, 7 (1): 34- 46. doi: 10.1109/TCCN.2020.3024610
 | 
																													
																						| 14 | WANG Q ,  SU B ,  WANG C X , et al.  ConvLSTM based spectrum sensing at very low SNR[J]. IEEE Wireless Communications Letters, 2023, 12 (6): 967- 971. doi: 10.1109/LWC.2023.3254048
 | 
																													
																						| 15 | ZHANG Z F ,  LUO H ,  WANG C , et al.  Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (11): 3521- 13531. | 
																													
																						| 16 | KIM S H ,  KIM J W ,  NWADIUGWU W P , et al.  Deep learn ing-based robust automatic modulation classification for cognitive radio networks[J]. IEEE Access, 2021, 9, 92386- 92393. doi: 10.1109/ACCESS.2021.3091421
 | 
																													
																						| 17 | TEKBIYIK K ,  AKBUNAR O ,  EKTI A R , et al.  Spectrum sensing and signal identification with deep learning based on spectral correlation function[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (10): 10514- 10527. doi: 10.1109/TVT.2021.3109236
 | 
																													
																						| 18 | RAZA A ,  MEHMOOD A ,  ULLAH S , et al.  Heartbeat sound signal classification using deep learning[J]. Sensors, 2019, 19 (21): 4819. doi: 10.3390/s19214819
 | 
																													
																						| 19 | ALTAHERI H ,  MUHAMMAD G ,  ALSULAIMAN M , et al.  Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35, 14681- 14722. doi: 10.1007/s00521-021-06352-5
 | 
																													
																						| 20 | 束学渊, 汪立新.  联合循环平稳特征PCA与XGBoost的频谱感知[J]. 计算机应用与软件, 2020, 37 (4): 114-118, 126. doi: 10.3969/j.issn.1000-386x.2020.04.019
 | 
																													
																						|  | SHU X Y ,  WANG L X .  Spectrum sensing by combining cyclostationary features PCA with XGBoost[J]. Computer Applications and Software, 2020, 37 (4): 114-118, 126. doi: 10.3969/j.issn.1000-386x.2020.04.019
 | 
																													
																						| 21 | WANG D ,  LIN M Y ,  ZHANG X X , et al.  Automatic modulation classification based on CNN-Transformer graph neural network[J]. Sensors, 2023, 23 (16): 7281. doi: 10.3390/s23167281
 | 
																													
																						| 22 | 葛战, 伍警, 李兵, 等.  基于循环谱和深度神经网络的调制识别算法[J]. 无线电工程, 2022, 52 (10): 1718- 1725. doi: 10.3969/j.issn.1003-3106.2022.10.005
 | 
																													
																						|  | GE Z ,  WU J ,  LI B , et al.  Modulation recognition based on cyclic spectrum and deep neural network[J]. Radio Engineering, 2022, 52 (10): 1718- 1725. doi: 10.3969/j.issn.1003-3106.2022.10.005
 | 
																													
																						| 23 | 李冬霞, 李思, 刘海涛.  载波偏置测距仪信号的循环平稳特性[J]. 系统工程与电子技术, 2016, 38 (8): 1935- 1938. | 
																													
																						|  | LI D X ,  LI S ,  LIU H T .  Cyclostationarity of carrier offset distance measure equipment signals[J]. Systems Engineering and Electronics, 2016, 38 (8): 1935- 1938. | 
																													
																						| 24 | 张贤达, 保铮.  非平稳信号分析与处理[M]. 北京: 国防工业出版社, 1998. | 
																													
																						|  | ZHANG X D ,  BAO Z .  Analysis and processing of non-stationary signals[M]. Beijing: National Defence Industry Press, 1998. | 
																													
																						| 25 | GARDNER W A .  Introduction to random process with application to signals and systems[M]. New York: Macmillan, 1989. | 
																													
																						| 26 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. | 
																													
																						| 27 | 陈月, 张希, 艾文宝.  基于残差神经网络的频谱感知算法[J]. 现代电子技术, 2022, 45 (7): 1- 5. | 
																													
																						|  | CHEN Y ,  ZHANG X ,  AI W B .  Spectrum sensing algorithm based on residual neural network[J]. Modern Electronic Technology, 2022, 45 (7): 1- 5. | 
																													
																						| 28 | EUROPEAN UNION, EUROCONTROL. PJ. 14-W2-60 TRL6 final LDACS A/G specification[EB/OL]. [2023-07-08]. https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf. | 
																													
																						| 29 | TAN P S ,  LIM K M ,  TAN C H , et al.  Pre-trained DenseNet-121 with multilayer perceptron for acoustic event classification[J]. IAENG International Journal of Computer Science, 2023, 50 (1): 51- 62. | 
																													
																						| 30 | FENG S ,  ZHAO L P ,  SHI H Y , et al.  One-dimensional VGGNet for high-dimensional data[J]. Applied Soft Computing, 2023, 135, 1568- 4946. |