系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (4): 917-926.doi: 10.12305/j.issn.1001-506X.2021.04.08
收稿日期:
2020-07-17
出版日期:
2021-03-25
发布日期:
2021-03-31
通讯作者:
钟兆根
E-mail:932304145@qq.com;iamzlm@163.com;zhongzhaogen@163.com
作者简介:
谢存祥 (1996-), 男, 硕士研究生, 主要研究方向为通信辐射源识别与频谱监测。E-mail: 基金资助:
Cunxiang XIE1(), Limin ZHANG1(), Zhaogen ZHONG2,*()
Received:
2020-07-17
Online:
2021-03-25
Published:
2021-03-31
Contact:
Zhaogen ZHONG
E-mail:932304145@qq.com;iamzlm@163.com;zhongzhaogen@163.com
摘要:
针对低信噪比(signal to noise ratio, SNR)下雷达信号脉内调制类型识别率较低的问题, 提出了基于时频特征提取和残差神经网络的雷达信号识别算法。时频特征提取首先通过分数阶傅里叶变换对信号进行Chirp基分解, 按照Chirp基载频与调频率的不同组合对信号划分类别, 并设置对应的分类特征参数。然后, 计算信号的伪Wigner-Ville时频分布并提取Zernike矩。上述特征参数组成信号特征矢量, 使用残差神经网络分类器实现雷达信号识别。仿真结果表明, 在SNR=-2 dB时识别准确率能达到93%以上, 同时鲁棒性验证良好, 算法复杂度能够满足现实要求。
中图分类号:
谢存祥, 张立民, 钟兆根. 基于时频特征提取和残差神经网络的雷达信号识别[J]. 系统工程与电子技术, 2021, 43(4): 917-926.
Cunxiang XIE, Limin ZHANG, Zhaogen ZHONG. Radar signal recognition based on time-frequency feature extraction and residual neural network[J]. Systems Engineering and Electronics, 2021, 43(4): 917-926.
表1
8种雷达信号数学形式"
信号 | 数学形式 |
CW | |
LFM | |
EQFM | |
SFM | |
FMCW | |
FSK | |
BPSK | |
FPSK |
1 | KISHORE T R , RAO K D . Automatic intrapulse modulation classification of advanced LPI radar waveforms[J]. IEEE Trans.on Aerospace Electronic & Systems, 2017, 53 (2): 901- 914. |
2 |
IGLESIAS V , GRAJAL J , ROYER P , et al. Real-time low-complexity automatic modulation classifier for pulsed radar signals[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (1): 108- 126.
doi: 10.1109/TAES.2014.130183 |
3 | 黄颖坤, 金炜东, 葛鹏, 等. 基于多尺度信息熵的雷达辐射源信号识别[J]. 电子与信息学报, 2019, 41 (5): 1084- 1091. |
HUANG Y K , JIN W D , GE P , et al. Radar emitter signal identification based on multi-scale information entropy[J]. Journal of Electronics & Information Technology, 2019, 41 (5): 1084- 1091. | |
4 |
LIU Y J , XIAO P , WU H C , et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26 (5): 973- 981.
doi: 10.1109/JSEE.2015.00106 |
5 | 高敬鹏, 孔维宇, 刘佳琪, 等. 基于时频分析的自适应PCA辐射源调制识别[J]. 应用科技, 2018, 45 (5): 33- 37. |
GAO J P , KONG W Y , LIU J Q , et al. Research on emitter modulation recognition of the adaptive PCA based on time-frequency analysis[J]. Applied Science and Technology, 2018, 45 (5): 33- 37. | |
6 |
DUDCZYK J . A method of feature selection in the aspect of specific identification of radar signals[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2017, 65 (1): 113- 119.
doi: 10.1515/bpasts-2017-0014 |
7 |
GUO Q , NAN P L , WAN J . Signal classification method based on data mining for multi-mode radar[J]. Journal of Systems Engineering and Electronics, 2016, 27 (5): 1010- 1017.
doi: 10.21629/JSEE.2016.05.09 |
8 |
GAO J P , LU Y , QI J W , et al. A radar signal recognition system based on non-negative matrix factorization network and improved artificial bee colony algorithm[J]. IEEE Access, 2019, 7, 117612- 117626.
doi: 10.1109/ACCESS.2019.2936669 |
9 | 刘鲁涛, 戴亮军, 陈涛. 基于频谱复杂度的雷达信号调制方式识别[J]. 哈尔滨工程大学学报, 2018, 39 (6): 1081- 1086. |
LIU L T , DAI L J , CHEN T . Radar signal modulation recognition based on spectrum complexity[J]. Journal of Harbin Engineering University, 2018, 39 (6): 1081- 1086. | |
10 |
ZHANG Y X , HONG R J , PAN P P , et al. Frequency-domain range sidelobe correction in stretch processing for wideband LFM radars[J]. IEEE Trans.on Aerospace Electronics System, 2017, 53 (1): 111- 121.
doi: 10.1109/TAES.2017.2649278 |
11 | 黄宇, 刘锋, 王泽众, 等. 基于FRFT的雷达信号chirp基稀疏特征提取及分选[J]. 航空学报, 2013, 34 (2): 393- 400. |
HUANG Y , LIU F , WANG Z Z , et al. Chirp function sparse feature extraction and sorting of radar signals based on FRFT[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34 (2): 393- 400. | |
12 | 曲志昱, 毛校洁, 侯长波. 基于奇异值熵和分形维数的雷达信号识别[J]. 系统工程与子技术, 2018, 40 (2): 303- 307. |
QU Z Y , MAO X J , HOU C B . Radar signal recognition based on singular value entropy and fractal dimension[J]. Systems Engineering and Electronics, 2018, 40 (2): 303- 307. | |
13 |
ZHANG M , LIU L , DIAO M . LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682.
doi: 10.3390/s16101682 |
14 |
PENG S L , JIANG H Y , WANG H X , et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (3): 718- 727.
doi: 10.1109/TNNLS.2018.2850703 |
15 | 邓兵, 王旭, 陶然, 等. 基于分数阶傅里叶变换的线性调频脉冲时延估计特性分析[J]. 兵工学报, 2012, 33 (6): 764- 768. |
DENG B , WANG X , TAO R , et al. Performance analysis of time delay estimation for linear frequency-modulated pulse based on fractional fourier transform[J]. Acta Armamentarii, 2012, 33 (6): 764- 768. | |
16 | 赵兴浩, 邓兵, 陶然. 分数阶傅里叶变换数值计算中的量纲归一化[J]. 北京理工大学学报, 2005, 25 (4): 361- 364. |
ZHAO X H , DENG B , TAO R . Dimensional normalization in the digital computation of the fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25 (4): 361- 364. | |
17 |
LYU Q S , QIN H L . A joint method based on time-frequency distribution to detect time-varying interference for GNSS receivers with a single antenna[J]. SenSors, 2019, 19, 1946.
doi: 10.3390/s19081946 |
18 | ZHANG X W , ZUO L , HUANG W Z , et al. Efficient method for the field-programmable gate arrays calculation of Wigner-Ville distribution[J]. IEEE Signal Processing Letters, 2019, 13 (6): 589- 595. |
19 | 陈雕, 张登福, 雍霄驹, 等. 雷达信号时频分析的特征提取[J]. 计算机应用, 2012, 32 (7): 2063- 2065, 2069. |
CHEN D , ZHANG D F , YONG X J , et al. Feature extraction in time-frequency analysis of radar signal sorting[J]. Journal of Computer Applications, 2012, 32 (7): 2063- 2065, 2069. | |
20 |
FAROKHI A S , SHAMSUDDIN S M , FLUSSER J , et al. Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis[J]. Journal of Electronic Imaging, 2013, 22 (1): 013030.
doi: 10.1117/1.JEI.22.1.013030 |
21 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521 (7553): 436.
doi: 10.1038/nature14539 |
22 |
O'SHEA T , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2017, 3 (4): 563- 575.
doi: 10.1109/TCCN.2017.2758370 |
23 |
PENG S L , JIANG H Y , WANG H X , et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30, 718- 727.
doi: 10.1109/TNNLS.2018.2850703 |
24 | ISHITSUKA K , ISO S , ONISHI K , et al. Object detection in ground-penetrating radar images using a deep convolutional neural network and image set preparation by migration[J]. International Journal of Geophysics, 2018, 2018, 9365184. |
25 |
HAN L , SUN J Z , ZHANG W . Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data[J]. IEEE Trans.on Geoence and Remote Sensing, 2020, 58 (2): 1487- 1495.
doi: 10.1109/TGRS.2019.2948070 |
26 |
LAN R S , ZOU H Z , PANG C , et al. Image denoising via deep residual convolutional neural networks[J]. Signal, Image and Video Processing, 2019, 15 (9): 1- 8.
doi: 10.1007/s11760-019-01537-x |
27 | YAN H Y , XU X . End-to-end video subtitle recognition via a deep residual neural network[J]. Pattern Recognition Letters, 2020, 131 (3): 368- 375. |
28 |
YUAN Q Q , ZHANG Q , LI J , et al. Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network[J]. IEEE Trans.on Geoence and Remote Sensing, 2019, 57 (2): 1205- 1218.
doi: 10.1109/TGRS.2018.2865197 |
29 |
HUANG H , PU C Y , LI Y , et al. Adaptive residual convolutional neural network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2520- 2531.
doi: 10.1109/JSTARS.2020.2995445 |
[1] | 王震铎, 朱云飞, 宁晓燕, 刁鸣. FrFT-OFDM系统中联合ICI自消除方案[J]. 系统工程与电子技术, 2022, 44(8): 2645-2651. |
[2] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
[3] | 唐玺博, 张立民, 钟兆根. 基于ADASYN与改进残差网络的入侵流量检测识别[J]. 系统工程与电子技术, 2022, 44(12): 3850-3862. |
[4] | 陈一畅, 熊鑫, 王万田. 基于稀疏FrFT的窄带雷达目标架次识别方法[J]. 系统工程与电子技术, 2021, 43(8): 2129-2136. |
[5] | 张怡霄, 郭文普, 康凯, 姚云龙, 王攀. 基于聚类和时序相关的重点雷达信号快速识别[J]. 系统工程与电子技术, 2020, 42(3): 597-602. |
[6] | 弋佳东, 杨洁. 基于IFOA-SA-BP神经网络的雷达信号识别[J]. 系统工程与电子技术, 2020, 42(12): 2735-2741. |
[7] | 石礼盟, 杨承志, 吴宏超. 基于深层残差网络和三元组损失的雷达信号识别方法[J]. 系统工程与电子技术, 2020, 42(11): 2506-2512. |
[8] | 孙艺聪, 田润澜, 董会旭, 孙亮. 基于SAMME+ResNet的多相码信号识别方法[J]. 系统工程与电子技术, 2020, 42(10): 2239-2245. |
[9] | 刘赢, 田润澜, 王晓峰. 基于深层卷积神经网络和双谱特征的雷达信号识别方法[J]. 系统工程与电子技术, 2019, 41(9): 1998-2005. |
[10] | 曲志昱, 毛校洁, 侯长波. 基于奇异值熵和分形维数的雷达信号识别[J]. 系统工程与电子技术, 2018, 40(2): 303-307. |
[11] | 李军1,2, 林秋华1, 杨秀庭2, 康春玉2. #br# 近场宽带LFM信号被动测向和测距方法[J]. 系统工程与电子技术, 2016, 38(8): 1737-1743. |
[12] | 涂星滨, 许肖梅, 杨亮亮, 邹哲光, 张兰. FRFT在水声信道时延频移联合估计中的应用[J]. 系统工程与电子技术, 2016, 38(7): 1666-1672. |
[13] | 朱江, 廖桂生, 朱圣棋. 空间目标成像中基于FrFT的高精度距离压缩方法[J]. 系统工程与电子技术, 2015, 37(2): 271-277. |
[14] | 李会勇, 许丁文, 胡进峰, 戴文娟, 何子述. 基于FRFT的天波雷达多机动目标检测[J]. 系统工程与电子技术, 2014, 36(9): 1725-1730. |
[15] | 赵志国, 肖卉. FRFT域混合天地波雷达扩展多普勒杂波抑制方法[J]. 系统工程与电子技术, 2014, 36(12): 2411-2416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||