系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (4): 917-926.doi: 10.12305/j.issn.1001-506X.2021.04.08

• 传感器与信号处理 • 上一篇    下一篇

基于时频特征提取和残差神经网络的雷达信号识别

谢存祥1(), 张立民1(), 钟兆根2,*()   

  1. 1. 海军航空大学信息融合研究所, 山东 烟台 264001
    2. 海军航空大学航空基础学院, 山东 烟台 264001
  • 收稿日期:2020-07-17 出版日期:2021-03-25 发布日期:2021-03-31
  • 通讯作者: 钟兆根 E-mail:932304145@qq.com;iamzlm@163.com;zhongzhaogen@163.com
  • 作者简介:谢存祥 (1996-), 男, 硕士研究生, 主要研究方向为通信辐射源识别与频谱监测。E-mail: 932304145@qq.com|张立民 (1966-), 男, 教授, 博士, 主要研究方向为卫星信号处理及应用。E-mail: iamzlm@163.com|钟兆根 (1984-), 男, 副教授, 博士, 主要研究方向为扩频信号处理。E-mail: zhongzhaogen@163.com
  • 基金资助:
    国家自然科学基金重大研究计划(91538201);泰山学者工程专项经费(Ts201511020)

Radar signal recognition based on time-frequency feature extraction and residual neural network

Cunxiang XIE1(), Limin ZHANG1(), Zhaogen ZHONG2,*()   

  1. 1. Department of Information Fusion, Naval Aviation University, Yantai 264001, China
    2. School of Basis Aviation, Naval Aviation University, Yantai 264001, China
  • Received:2020-07-17 Online:2021-03-25 Published:2021-03-31
  • Contact: Zhaogen ZHONG E-mail:932304145@qq.com;iamzlm@163.com;zhongzhaogen@163.com

摘要:

针对低信噪比(signal to noise ratio, SNR)下雷达信号脉内调制类型识别率较低的问题, 提出了基于时频特征提取和残差神经网络的雷达信号识别算法。时频特征提取首先通过分数阶傅里叶变换对信号进行Chirp基分解, 按照Chirp基载频与调频率的不同组合对信号划分类别, 并设置对应的分类特征参数。然后, 计算信号的伪Wigner-Ville时频分布并提取Zernike矩。上述特征参数组成信号特征矢量, 使用残差神经网络分类器实现雷达信号识别。仿真结果表明, 在SNR=-2 dB时识别准确率能达到93%以上, 同时鲁棒性验证良好, 算法复杂度能够满足现实要求。

关键词: 雷达信号识别, 分数阶傅里叶变换, Chirp基分解, Zernike矩, 残差神经网络

Abstract:

Aiming at the problem of low recognition rate of radar signal pulse modulation type under low signal to noise ratio(SNR), a radar signal recognition algorithm based on time-frequency feature extraction and residual neural network is proposed. The time-frequency feature extraction firstly performs chirp-based decomposition of the signal through the fractional Fourier transform, classifies the signal according to different combinations of chirp-based carrier frequency and frequency modulation, and sets the corresponding classification feature parameters. Then, the pseudo Wigner-Ville time-frequency distribution of the signal is calculated and Zernike moments is extracted. The above-mentioned characteristic parameters form a signal characteristic vector, and a residual neural network classifier is used to realize radar signal recognition. Simulation results show that the recognition accuracy can reach more than 93% when SNR is under -2 dB. At the same time, the robustness is well verified, and the algorithm complexity can meet the actual requirements.

Key words: radar signal identification, fractional Fourier transform, Chirp-based decomposition, Zernike moment, residual neural network

中图分类号: