系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (12): 2735-2741.doi: 10.3969/j.issn.1001-506X.2020.12.08

• 传感器与信号处理 • 上一篇    下一篇

基于IFOA-SA-BP神经网络的雷达信号识别

弋佳东(), 杨洁()   

  1. 西安邮电大学通信与信息工程学院, 陕西 西安 710121
  • 收稿日期:2019-12-29 出版日期:2020-12-01 发布日期:2020-11-27
  • 作者简介:弋佳东(1995-),男,硕士研究生,主要研究方向为雷达信号处理。E-mail:1013844969@qq.com|杨洁(1976-),女,副教授,硕士,主要研究方向为阵列信号处理、自适应信号处理。E-mail:yangjie@xupt.edu.cn
  • 基金资助:
    陕西省教育厅专项基金(17JK0693)

Radar signal recognition based on IFOA-SA-BP neural network

Jiadong YI(), Jie YANG()   

  1. School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • Received:2019-12-29 Online:2020-12-01 Published:2020-11-27

摘要:

为提高雷达信号的识别率,提出一种改进的果蝇优化算法(improved fruit fly optimization algorithm, IFOA)和模拟退火(simulated annealing, SA)算法相融合并用于优化反向传播(back propagation, BP)神经网络的雷达信号识别算法。首先,该算法提取雷达信号的调和平均盒维数、信息维数和差分近似熵特征作为信号识别的三维特征。然后,改进果蝇优化算法的寻优步长并添加逃脱系数以修改适应度函数,同时引入三维空间的搜索概念扩大果蝇的搜索范围,再对果蝇算法所求解的接受机制通过SA算法进行修正。最后,将融合后的算法IFOA-SA用于优化BP神经网络得到网络最优的初始权值和阈值,并用此网络进行雷达信号的分类识别。通过与BP和FOA-BP进行对比,结果表明IFOA-SA-BP能够提高雷达信号的识别率,证实了该算法的有效性。

关键词: 雷达信号识别, 特征提取, 反向传播神经网络, 果蝇优化算法, 模拟退火算法

Abstract:

In order to improve the recognition rate of radar signal, an improved fruit fly optimization algorithm (IFOA) and simulated annealing (SA) algorithm are combined to optimize the radar signal recognition algorithm of the back propagation (BP) neural network. Firsty, the algorithm extracts the harmonic average fractal box dimension, information dimension and differential approximate entropy feature of radar signal as the three-dimensional features of signal recognition. Then, the optimization step length of fruit fly optimization algorithm (FOA) is improved and the jump coefficient is added to modify the fitness function. At the same time, the three-dimensional search concept is introduced to expand the search range of the fruit fly. And then the acceptance mechanism of solution by the FOA is modified by the SA algorithm. Finally, the fusion algorithm of the IFOA-SA is used to optimize the BP neural network for acquirig the best initial weight and threshold value, and the network is used for radar signal classification and recognition. Compared with the BP and the FOA-BP, the results show that the IFOA-SA-BP can improve the recognition rate of radar signal, which proves the effectiveness of the algorithm.

Key words: radar signal recognition, feature extraction, back propagation (BP) neural network, fruit fly optimization algorithm (FOA), simulated annealing (SA) algorithm

中图分类号: