系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 428-441.doi: 10.12305/j.issn.1001-506X.2025.02.10

• 传感器与信号处理 • 上一篇    

基于图像结构信息的可见光和SAR图像快速配准

贾蕾蕾1, 刘利民1,*, 董健2   

  1. 1. 陆军工程大学石家庄校区电子与光学工程系, 河北 石家庄 050003
    2. 北京理工大学集成电路与电子学院, 北京 100081
  • 收稿日期:2023-12-22 出版日期:2025-02-25 发布日期:2025-03-18
  • 通讯作者: 刘利民
  • 作者简介:贾蕾蕾 (1994—), 男, 博士研究生, 主要研究方向为光电侦察与信息处理
    刘利民 (1971—), 男, 教授, 博士, 主要研究方向为光电对抗、光电信息处理
    董健 (1982—), 男, 副研究员, 博士, 主要研究方向为雷达信号处理、遥感图像处理

Fast registration of optical and SAR images based on image structural information

Leilei JIA1, Limin LIU1,*, Jian DONG2   

  1. 1. Department of Electronic and Optical Engineering, Army Engineering University Shijiazhuang Campus, Shijiazhuang 050003, China
    2. School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • Received:2023-12-22 Online:2025-02-25 Published:2025-03-18
  • Contact: Limin LIU

摘要:

针对可见光和合成孔径雷达(synthetic aperture radar, SAR)图像配准过程中的几何差异、辐射差异和斑点噪声问题, 提出一种基于图像结构信息的可见光和SAR图像快速配准算法。首先, 建立高斯尺度空间, 利用偏移均值滤波和双线性插值建立图像自相似性方向图; 然后, 在最大和最小自相似性图上进行加速分段特征测试(features from accelerated segment test, FAST)特征点检测, 获取角点和边缘特征; 再者, 基于最小自相似性索引图和等面积策略构建描述子, 并提出描述子多方向转换方法和批量生成方法; 最后, 利用最邻近距离比算法和快速抽样一致性算法识别正确匹配。实验结果表明, 所提算法在可见光和SAR图像配准方面具有明显优势。

关键词: 可见光和合成孔径雷达图像配准, 结构信息, 多方向转换, 批量生成

Abstract:

To address the problem of geometric differences, radiometric differences, and speckle noise in the registration process of the images of visible light and synthetic aperture radar (SAR), a fast registration algorithm for optical and SAR images based on image structure information is proposed. Firstly, a Gaussian scale space is established and an image self-similarity orientation map is constructed by using offset mean filtering and bilinear interpolation. Then, characteristic points detection for features from accelerated segment test (FAST) is performed on the maximum and minimum self-similarity maps to obtain corner and edge features. Furthermore, based on the minimum self-similarity index map and equal area strategy, descriptors are constructed, and multi-orientation conversion method and batch generation method for descriptors are proposed. Finally, the nearest-neighbor distance ratio (NNDR) algorithm and the fast sample consensus (FSC) algorithm are performed to identify correct matches. The experimental results show that the proposed algorithm has significant advantages in visible optical and SAR image registration.

Key words: visible optical and synthetic aperture radar (SAR) image registration, structural information, multi-orientation conversion, batch generation

中图分类号: