系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 428-441.doi: 10.12305/j.issn.1001-506X.2025.02.10
• 传感器与信号处理 • 上一篇
贾蕾蕾1, 刘利民1,*, 董健2
收稿日期:
2023-12-22
出版日期:
2025-02-25
发布日期:
2025-03-18
通讯作者:
刘利民
作者简介:
贾蕾蕾 (1994—), 男, 博士研究生, 主要研究方向为光电侦察与信息处理Leilei JIA1, Limin LIU1,*, Jian DONG2
Received:
2023-12-22
Online:
2025-02-25
Published:
2025-03-18
Contact:
Limin LIU
摘要:
针对可见光和合成孔径雷达(synthetic aperture radar, SAR)图像配准过程中的几何差异、辐射差异和斑点噪声问题, 提出一种基于图像结构信息的可见光和SAR图像快速配准算法。首先, 建立高斯尺度空间, 利用偏移均值滤波和双线性插值建立图像自相似性方向图; 然后, 在最大和最小自相似性图上进行加速分段特征测试(features from accelerated segment test, FAST)特征点检测, 获取角点和边缘特征; 再者, 基于最小自相似性索引图和等面积策略构建描述子, 并提出描述子多方向转换方法和批量生成方法; 最后, 利用最邻近距离比算法和快速抽样一致性算法识别正确匹配。实验结果表明, 所提算法在可见光和SAR图像配准方面具有明显优势。
中图分类号:
贾蕾蕾, 刘利民, 董健. 基于图像结构信息的可见光和SAR图像快速配准[J]. 系统工程与电子技术, 2025, 47(2): 428-441.
Leilei JIA, Limin LIU, Jian DONG. Fast registration of optical and SAR images based on image structural information[J]. Systems Engineering and Electronics, 2025, 47(2): 428-441.
表1
6种算法的配准结果对比"
实验组别 | 评价指标 | OS-SIFT | OS-SIFT+CSC | RIFT | OSS | LNIFT | ASS | HOWP | 本文算法 |
1 | NCM/TNM | 5/19 | 50/169 | 34/95 | 45/135 | 68/204 | 78/220 | 88/190 | 269/498 |
CMR | 0.26 | 0.30 | 0.36 | 0.33 | 0.33 | 0.35 | 0.46 | 0.54 | |
RMSE | 1.52 | 1.48 | 1.46 | 1.42 | 1.48 | 1.40 | 1.38 | 1.32 | |
PT | 4.95 | 5.93 | 3.62 | 8.55 | 11.21 | 7.60 | 6.09 | 5.6 | |
2 | NCM/TNM | - | 5/108 | 4/10 | 8/26 | 40/115 | 140/296 | 20/47 | 189/368 |
CMR | - | 0.05 | 0.40 | 0.31 | 0.35 | 0.47 | 0.43 | 0.51 | |
RMSE | - | 1.56 | 1.51 | 1.45 | 1.33 | 1.38 | 1.34 | 1.29 | |
PT | - | 25.33 | 6.93 | 23.08 | 16.22 | 14.52 | 10.29 | 9.21 | |
3 | NCM/TNM | - | - | - | 8/23 | 64/164 | - | - | 98/197 |
CMR | - | - | - | 0.35 | 0.39 | - | - | 0.50 | |
RMSE | - | - | - | 1.49 | 1.42 | - | - | 1.29 | |
PT | - | - | - | 2.07 | 4.77 | - | - | 1.5 | |
4 | NCM/TNM | - | 14/40 | 30/72 | 10/32 | 97/256 | 30/76 | 26/65 | 197/339 |
CMR | - | 0.35 | 0.42 | 0.31 | 0.38 | 0.39 | 0.40 | 0.58 | |
RMSE | - | 1.48 | 1.45 | 1.39 | 1.32 | 1.38 | 1.31 | 1.21 | |
PT | - | 1.24 | 1.26 | 1.81 | 4.4 | 1.36 | 1.43 | 1.67 | |
5 | NCM/TNM | 1/4 | 5/18 | 8/23 | 6/21 | 62/157 | 3/21 | - | 50/110 |
CMR | 0.25 | 0.28 | 0.35 | 0.29 | 0.39 | 0.14 | - | 0.45 | |
RMSE | 1.56 | 1.62 | 1.61 | 1.58 | 1.49 | 1.50 | - | 1.45 | |
PT | 2.82 | 1.27 | 1.33 | 1.99 | 4.27 | 1.19 | - | 1.15 | |
6 | NCM/TNM | - | - | - | - | 40/102 | - | - | 58/133 |
CMR | - | - | - | - | 0.39 | - | - | 0.44 | |
RMSE | - | - | - | - | 1.50 | - | - | 1.36 | |
PT | - | - | - | - | 4.8 | - | - | 1.60 |
1 |
PAUL S , PATI U C . A comprehensive review on remote sensing image registration[J]. International Journal of Remote Sensing, 2021, 42 (14): 5396- 5432.
doi: 10.1080/01431161.2021.1906985 |
2 | YE Y Y , ZHANG J C , ZHOU L , et al. Optical and SAR image fusion based on complementary feature decomposition and visual saliency features[J]. IEEE Trans.on Geoscience and Remote Sensing, 2024, 62, 5205315. |
3 | ZHOU R F , QUAN D , WANG S , et al. A unified deep learning network for remote sensing image registration and change detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2024, 62, 5101216. |
4 | MAO Y Q , CHEN K Q , ZHAO L J , et al. Elevation estimation-driven building 3-D reconstruction from single-view remote sensing imagery[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5608718. |
5 | GAMBRYCH J , GROMEK D , ABRATKIEWICZ K , et al. SAR and orthophoto image registration with simultaneous SAR-based altitude measurement for airborne navigation systems[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5219714. |
6 |
ZITOVA B , FLUSSER J . Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21 (11): 977- 1000.
doi: 10.1016/S0262-8856(03)00137-9 |
7 |
FENG R T , SHEN H F , BAI J J , et al. Advances and opportunities in remote sensing image geometric registration: a systema-tic review of state-of-the-art approaches and future research directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9 (4): 120- 142.
doi: 10.1109/MGRS.2021.3081763 |
8 |
HUGHES L H , SCHMITT M , ZHU X X . Mining hard negative samples for SAR-optical image matching using generative adversarial networks[J]. Remote Sensing, 2018, 10 (10): 1552.
doi: 10.3390/rs10101552 |
9 |
LIU M , ZHOU G X , MA L F , et al. SIFNet: a self-attention interaction fusion network for multisource satellite imagery template matching[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103247.
doi: 10.1016/j.jag.2023.103247 |
10 | ZHANG H , LEI L , NI W P , et al. Optical and SAR image matching using pixelwise deep dense features[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 6000705. |
11 |
LI H Y , XU F , YANG W , et al. Learning to find the optimal correspondence between SAR and optical image patches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 9816- 9830.
doi: 10.1109/JSTARS.2023.3324768 |
12 |
XU W Y , YUAN X H , HU Q W , et al. SAR-optical feature matching: a large-scale patch dataset and a deep local descriptor[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122, 103433.
doi: 10.1016/j.jag.2023.103433 |
13 | YE Y Y , YANG C , GONG G Q , et al. Robust optical and SAR image matching using attention-enhanced structural features[J]. IEEE Trans.on Geoscience and Remote Sensing, 2024, 62, 5610212. |
14 | XIANG Y M , JIAO N G , WANG F , et al. A robust two-stage registration algorithm for large optical and SAR images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5218615. |
15 |
XIONG X , JIN G W , XU Q , et al. Self-similarity features for multimodal remote sensing image matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 12440- 12454.
doi: 10.1109/JSTARS.2021.3131489 |
16 |
USS M , VOZEL B , LUKIN V , et al. Efficient discrimination and localization of multimodal remote sensing images using CNN-based prediction of localization uncertainty[J]. Remote Sensing, 2020, 12 (4): 703.
doi: 10.3390/rs12040703 |
17 | LIU D, MANSOUR H, BOUFOUNOS P T. Robust mutual information-based multi-image registration[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 915-918. |
18 | PRATT W K . Correlation techniques of image registration[J]. IEEE Trans.on Aerospace and Electronic Systems, 1974, 10 (3): 353- 358. |
19 | HAST A. Robust and invariant phase based local feature matching[C]//Proc. of the 22nd International Conference on Pattern Recognition, 2014: 809-814. |
20 | SURI S , REINARTZ P . Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas[J]. IEEE Trans.on Geoscience and Remote Sensing, 2009, 48 (2): 939- 949. |
21 | 叶沅鑫, 单杰, 彭剑威, 等. 利用局部自相似的多光谱遥感图像自动配准[J]. 测绘学报, 2014, 43 (3): 268- 275. |
YE Y X , SHAN J , PENG J W , et al. Automated multispectral remote sensing image registration using local self-similarity[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43 (3): 268- 275. | |
22 | SHECHTMAN E, IRANI M. Matching local self-similarities across images and videos[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2007. |
23 |
YE Y Y , SHEN L , HAO M , et al. Robust optical-to-SAR image matching based on shape properties[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (4): 564- 568.
doi: 10.1109/LGRS.2017.2660067 |
24 |
XIONG X , XU Q , JIN G W , et al. Rank-based local self-similarity descriptor for optical-to-SAR image matching[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (10): 1742- 1746.
doi: 10.1109/LGRS.2019.2955153 |
25 |
YE Y Y , SHAN J , BRUZZONE L , et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (5): 2941- 2958.
doi: 10.1109/TGRS.2017.2656380 |
26 |
YE Y Y , BRUZZONE L , SHAN J , et al. Fast and robust matching for multimodal remote sensing image registration[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (11): 9059- 9070.
doi: 10.1109/TGRS.2019.2924684 |
27 |
XIANG Y M , TAO R S , WAN L , et al. OS-PC: combining feature representation and 3-D phase correlation for subpixel optical and SAR image registration[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (9): 6451- 6466.
doi: 10.1109/TGRS.2020.2976865 |
28 |
FAN J W , WU Y , LI M , et al. SAR and optical image registration using nonlinear diffusion and phase congruency structural descriptor[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (9): 5368- 5379.
doi: 10.1109/TGRS.2018.2815523 |
29 |
XIANG Y M , TAO R S , WANG F , et al. Automatic registration of optical and SAR images via improved phase congruency model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5847- 5861.
doi: 10.1109/JSTARS.2020.3026162 |
30 |
XIANG Y M , WANG F , YOU H J . OS-SIFT: a robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (6): 3078- 3090.
doi: 10.1109/TGRS.2018.2790483 |
31 |
杨勇, 胡思茹. 基于模板匹配约束下的光学与SAR图像配准[J]. 系统工程与电子技术, 2019, 41 (10): 2235- 2242.
doi: 10.3969/j.issn.1001-506X.2019.10.12 |
YANG Y , HU S R . Registration of optical and SAR images based on template matching constraints[J]. Systems Engineering and Electronics, 2019, 41 (10): 2235- 2242.
doi: 10.3969/j.issn.1001-506X.2019.10.12 |
|
32 |
LOWE D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
33 |
FAN B , HUO C L , PAN C H , et al. Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (4): 657- 661.
doi: 10.1109/LGRS.2012.2216500 |
34 |
XU C , SUI H G , LI H L , et al. An automatic optical and SAR image registration method with iterative level set segmentation and SIFT[J]. International Journal of Remote Sensing, 2015, 36 (15): 3997- 4017.
doi: 10.1080/01431161.2015.1070321 |
35 | MA W P , WEN Z L , WU Y , et al. Remote sensing image regi- stration with modified SIFT and enhanced feature matching[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 14 (1): 3- 7. |
36 | ZHANG W N . Combination of SIFT and Canny edge detection for registration between SAR and optical images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4007205. |
37 | ZHANG X T , WANG Y H , LIU H W . Robust optical and SAR image registration based on OS-SIFT and cascaded sample consensus[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 4011605. |
38 | 叶沅鑫, 慎利, 陈敏, 等. 局部相位特征描述的多源遥感影像自动匹配[J]. 武汉大学学报(信息科学版), 2017, 42 (9): 1278- 1284. |
YE Y X , SHEN L , CHEN M , et al. An automatic matching method based on local phase feature descriptor for multi-source remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2017, 42 (9): 1278- 1284. | |
39 |
PAUL S , PATI U C . Automatic optical-to-SAR image registration using a structural descriptor[J]. IET Image Processing, 2020, 14 (1): 62- 73.
doi: 10.1049/iet-ipr.2019.0389 |
40 |
LI J Y , HU Q W , AI M Y . RIFT: multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Trans.on Image Processing, 2020, 29, 3296- 3310.
doi: 10.1109/TIP.2019.2959244 |
41 |
ZHANG Y J , YAO Y Y , WAN Y , et al. Histogram of the ori- entation of the weighted phase descriptor for multi-modal remote sensing image matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196, 1- 15.
doi: 10.1016/j.isprsjprs.2022.12.018 |
42 | XIONG X , JIN G W , XU Q , et al. Robust registration algorithm for optical and SAR images based on adjacent self-similarity feature[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5233117. |
43 | LI J Y , XU W Y , SHI P C , et al. LNIFT: locally normalized image for rotation invariant multimodal feature matching[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5621314. |
[1] | 肖凯, 肖国尧, 孙宗正, 王铎鹏, 全英汇. 小型化宽带侦察干扰一体化系统的设计与验证[J]. 系统工程与电子技术, 2025, 47(1): 22-33. |
[2] | 孟洋, 周国如, 李洁, 张冰尘. 基于结构化字典学习的判别稀疏微波成像方法[J]. 系统工程与电子技术, 2025, 47(1): 94-100. |
[3] | 张法桐, 付耀文, 杨威, 张文鹏, 颜上取. 微小型无人机载FMCW SAR宽波束运动补偿算法[J]. 系统工程与电子技术, 2024, 46(10): 3303-3311. |
[4] | 王进, 冷祥光, 孙忠镇, 马晓杰, 杨阳, 计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究[J]. 系统工程与电子技术, 2024, 46(7): 2237-2255. |
[5] | 李震, 何华锋, 周涛, 张鑫, 韩晓斐, 王栗沅. 基于UCA-FDA雷达距离补偿的DOA估计方法[J]. 系统工程与电子技术, 2024, 46(6): 1967-1974. |
[6] | 扈琪, 胡绍海, 刘帅奇. 基于多层显著性模型的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2024, 46(2): 478-487. |
[7] | 陈洋, 肖国尧, 全英汇, 任爱锋, 别博文, 邢孟道. 基于多核DSP的星载双基FMCW SAR成像算法实现[J]. 系统工程与电子技术, 2024, 46(1): 121-129. |
[8] | 祝昇翔, 何岷, 贺志毅, 王嘉欣. 联合最小方差与最大似然谱估计的前视成像方法[J]. 系统工程与电子技术, 2023, 45(10): 3108-3115. |
[9] | 周春花, 魏维伟, 张学成, 郑鑫, 程冕之. 逆合成孔径成像雷达隐身目标零样本识别[J]. 系统工程与电子技术, 2023, 45(10): 3116-3121. |
[10] | 朱瀚神, 胡文华, 郭宝锋, 焦丽婷, 朱晓秀, 朱常安. 双基地ISAR稀疏孔径机动目标MTRC补偿成像算法[J]. 系统工程与电子技术, 2023, 45(7): 2022-2030. |
[11] | 朱晶晶, 朱圣棋, 廖桂生, 许京伟, 兰岚, 曾操. 相控阵和频率分集阵双模式雷达联合目标检测[J]. 系统工程与电子技术, 2023, 45(5): 1342-1350. |
[12] | 朱晓秀, 刘利民, 胡文华, 郭宝锋, 史林, 朱瀚神. 基于GTD模型的多视角多频带ISAR融合成像[J]. 系统工程与电子技术, 2023, 45(3): 726-735. |
[13] | 李瑞泽, 张双辉, 刘永祥. 基于卷积ADMM网络的高效结构化稀疏ISAR成像方法[J]. 系统工程与电子技术, 2023, 45(1): 56-70. |
[14] | 吴志鹏, 张平, 李震, 黄磊, 刘畅, 高硕. 基于轻小型无人机雷达的植被高度反演方法[J]. 系统工程与电子技术, 2022, 44(12): 3667-3675. |
[15] | 李彦君, 刘佳, 徐秋锋. 基于切比雪夫拟合的BP自聚焦算法[J]. 系统工程与电子技术, 2022, 44(10): 3020-3028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||