1 |
WAN L T , LIU R , SUN L , et al. UAV swarm based radar signal sorting via multi-source data fusion: a deep transfer learning framework[J]. Information Fusion, 2022, 78, 90- 101.
doi: 10.1016/j.inffus.2021.09.007
|
2 |
CHI K , SHEN J H , LI Y , et al. Multi-function radar signal sorting based on complex network[J]. IEEE Signal Processing Letters, 2020, 28, 91- 95.
|
3 |
ZHAO S Q , WANG W H , ZENG D G , et al. A novel aggregated multipath extreme gradient boosting approach for radar emitter classification[J]. IEEE Trans.on Industrial Electronics, 2021, 69 (1): 703- 712.
|
4 |
CAMPBELL J W , SAPERSTEIN S . Signal recognition in complex radar environments[J]. Electronic, 1976, 3 (6): 8.
|
5 |
JIA J W , HAN Z Z , LIU L M , et al. Research on the SDIF fai-lure principle for RF stealth radar signal design[J]. Electronics, 2022, 11 (11): 1777.
doi: 10.3390/electronics11111777
|
6 |
ZHANG C J , LIU Y C , SI W J . Synthetic algorithm for deinter leaving radar signals in a complex environment[J]. IET Radar, Sonar & Navigation, 2020, 14 (12): 1918- 1928.
|
7 |
隋金坪, 刘振, 刘丽, 等. 雷达辐射源信号分选研究进展[J]. 雷达学报, 2022, 11 (3): 418- 433.
|
|
SUI J P , LIU Z , LIU L , et al. Progress in radar emitter signal deinterleaving[J]. Journal of Radars, 2022, 11 (3): 418- 433.
|
8 |
YANG S Y , ZHAO X Y , LIU H L , et al. Deep contrastive clustering for signal deinterleaving[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 60 (1): 252- 263.
|
9 |
KANG K , ZHANG Y X , GUO W P , et al. Key radar signal sorting and recognition method based on clustering combined with PRI transform algorithm[J]. Journal of Artificial Intelligence and Technology, 2022, 2 (2): 62- 68.
|
10 |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databa-ses with noise[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226-231.
|
11 |
LANG P , FU X J , CUI Z D , et al. Subspace decomposition based adaptive density peak clustering for radar signals sorting[J]. IEEE Signal Processing Letters, 2021, 29, 424- 428.
|
12 |
JIAN W , SONG W M . A new radar signal sorting method based on data field[J]. Applied Mechanics and Materials, 2014, 610, 401- 406.
doi: 10.4028/www.scientific.net/AMM.610.401
|
13 |
WEI Z K , GAO Y N , ZHANG X J , et al. Adaptive marine traffic behaviour pattern recognition based on multidimensional dynamic time warping and DBSCAN algorithm[J]. Expert Systems with Applications, 2024, 238, 122229.
doi: 10.1016/j.eswa.2023.122229
|
14 |
陈涛, 刘福悦, 李金鑫, 等. 基于深度分割的端到端雷达信号分选[J]. 系统工程与电子技术, 2023, 45 (5): 1351- 1358.
doi: 10.12305/j.issn.1001-506X.2023.05.11
|
|
CHEN T , LIU F Y , LI J X , et al. End-to-end radar signal sorting based on deep segmentation[J]. Systems Engineering and Electronics, 2023, 45 (5): 1351- 1358.
doi: 10.12305/j.issn.1001-506X.2023.05.11
|
15 |
FAN R Z , ZHU M T , ZHANG X K . Multivariate time series feature extraction and clustering framework for multi-function radar work mode recognition[J]. Electronics, 2024, 13 (8): 1412.
doi: 10.3390/electronics13081412
|
16 |
LANG P , FU X J , DONG J , et al. A novel radar signals sorting method via residual graph convolutional network[J]. IEEE Signal Processing Letters, 2023, 30, 753- 757.
doi: 10.1109/LSP.2023.3287404
|
17 |
ZHAO Y X , FENG H C , JIANG K L , et al. Information fusion for radar signal sorting with the distributed reconnaissance receivers[J]. Remote Sensing, 2023, 15 (15): 3743.
doi: 10.3390/rs15153743
|
18 |
ZHANG Z Z , SHI X R , GUO X Y , et al. TR-RAGCN-AFF-RESS: a method for radar emitter signal sorting[J]. Remote Sensing, 2024, 16 (7): 1121.
doi: 10.3390/rs16071121
|
19 |
LI H Q , LI Y L , HE C , et al. Radar working state recognition based on the unsupervised and incremental method[J]. Journal of Sensors, 2021, 2021 (Pt. 7): 8673046.
|
20 |
LI P . Research on radar signal recognition based on automatic machine learning[J]. Neural Computing and Applications, 2020, 32 (7): 1959- 1969.
doi: 10.1007/s00521-019-04494-1
|
21 |
HAN S D , YAN L J , ZHANG Y X , et al. Adaptive radar detection and classification algorithms for multiple coherent signals[J]. IEEE Trans.on Signal Processing, 2020, 69 (560): 572.
|
22 |
司伟建, 张悦, 邓志安. 用于雷达信号分选的连通k近邻聚类算法[J]. 系统工程与电技术, 2023, 45 (8): 2463- 2470.
|
|
SI W J , ZHANG Y , DENG Z A . Connected k-nearest neighbor clustering algorithm for radar signal sorting[J]. Systems Engineering and Electronics, 2023, 45 (8): 2463- 2470.
|
23 |
DADGARNIA A , SADEGHI M T . A novel method of deinter leaving radar pulse sequences based on a modified DBSCAN algorithm[J]. China Communications, 2023, 20 (2): 198- 215.
doi: 10.23919/JCC.2023.02.012
|
24 |
ANKERST M , BREUNIG M M , KRIEGEL H P , et al. OPTICS: ordering points to identify the clustering structure[J]. ACM Sigmod Record, 1999, 28 (2): 49- 60.
doi: 10.1145/304181.304187
|
25 |
WU C X , CHEN Y , DONG Y , et al. VizOPTICS: getting insights into OPTICS via interactive visual analysis[J]. Compu-ters and Electrical Engineering, 2023, 107, 108624.
doi: 10.1016/j.compeleceng.2023.108624
|
26 |
SCHUBERT E , SANDER J , ESTER M , et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42 (3): 19.
|
27 |
DASZY K M , WALCZAK B , MASSART D L . Looking for natural patterns in data: Part 1. density-based approach[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 56 (2): 83- 92.
doi: 10.1016/S0169-7439(01)00111-3
|
28 |
DENG Z , HU Y Y , ZHU M , et al. A scalable and fast OPTICS for clustering trajectory big data[J]. Cluster Computing, 2015, 18, 549- 562.
doi: 10.1007/s10586-014-0413-9
|
29 |
RODRIGUEZ A , LAIO A . Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496.
doi: 10.1126/science.1242072
|
30 |
ZHANG T , RAMAKRISHNAN R , LIVNY M . BIRCH: an efficient data clustering method for very large databases[J]. ACM Sigmod Record, 1996, 25 (2): 103- 114.
doi: 10.1145/235968.233324
|
31 |
WANG Y Z , QIAN J X , HASSAN M , et al. Density peak clustering algorithms: a review on the decade 2014-2023[J]. Expert Systems with Applications, 2023, 238 (A): 121860.
|
32 |
AL M A , FARHAN A , FENG H C , et al. An intelligent radar signal classification and deinterleaving method with unified residual recurrent neural network[J]. IET Radar, Sonar & Navigation, 2023, 17 (8): 1259- 1276.
|
33 |
AL-SAMARA M , BENNIS I , ABOUAISSA A , et al. Complete outlier detection and classification framework for WSNs based on OPTICS[J]. Journal of Network and Computer Applications, 2023, 211, 103563.
doi: 10.1016/j.jnca.2022.103563
|
34 |
DRIAS H , DRIAS Y , HOUACINE N A , et al. Quantum OPTICS and deep self-learning on swarm intelligence algorithms for Covid-19 emergency transportation[J]. Soft Computing, 2023, 27 (18): 13181- 13200.
doi: 10.1007/s00500-022-06946-8
|