| 1 | WAN L T ,  LIU R ,  SUN L , et al.  UAV swarm based radar signal sorting via multi-source data fusion: a deep transfer learning framework[J]. Information Fusion, 2022, 78, 90- 101. doi: 10.1016/j.inffus.2021.09.007
 | 
																													
																						| 2 | CHI K ,  SHEN J H ,  LI Y , et al.  Multi-function radar signal sorting based on complex network[J]. IEEE Signal Processing Letters, 2020, 28, 91- 95. | 
																													
																						| 3 | ZHAO S Q ,  WANG W H ,  ZENG D G , et al.  A novel aggregated multipath extreme gradient boosting approach for radar emitter classification[J]. IEEE Trans.on Industrial Electronics, 2021, 69 (1): 703- 712. | 
																													
																						| 4 | CAMPBELL J W ,  SAPERSTEIN S .  Signal recognition in complex radar environments[J]. Electronic, 1976, 3 (6): 8. | 
																													
																						| 5 | JIA J W ,  HAN Z Z ,  LIU L M , et al.  Research on the SDIF fai-lure principle for RF stealth radar signal design[J]. Electronics, 2022, 11 (11): 1777. doi: 10.3390/electronics11111777
 | 
																													
																						| 6 | ZHANG C J ,  LIU Y C ,  SI W J .  Synthetic algorithm for deinter leaving radar signals in a complex environment[J]. IET Radar, Sonar & Navigation, 2020, 14 (12): 1918- 1928. | 
																													
																						| 7 | 隋金坪, 刘振, 刘丽, 等.  雷达辐射源信号分选研究进展[J]. 雷达学报, 2022, 11 (3): 418- 433. | 
																													
																						|  | SUI J P ,  LIU Z ,  LIU L , et al.  Progress in radar emitter signal deinterleaving[J]. Journal of Radars, 2022, 11 (3): 418- 433. | 
																													
																						| 8 | YANG S Y ,  ZHAO X Y ,  LIU H L , et al.  Deep contrastive clustering for signal deinterleaving[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 60 (1): 252- 263. | 
																													
																						| 9 | KANG K ,  ZHANG Y X ,  GUO W P , et al.  Key radar signal sorting and recognition method based on clustering combined with PRI transform algorithm[J]. Journal of Artificial Intelligence and Technology, 2022, 2 (2): 62- 68. | 
																													
																						| 10 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databa-ses with noise[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226-231. | 
																													
																						| 11 | LANG P ,  FU X J ,  CUI Z D , et al.  Subspace decomposition based adaptive density peak clustering for radar signals sorting[J]. IEEE Signal Processing Letters, 2021, 29, 424- 428. | 
																													
																						| 12 | JIAN W ,  SONG W M .  A new radar signal sorting method based on data field[J]. Applied Mechanics and Materials, 2014, 610, 401- 406. doi: 10.4028/www.scientific.net/AMM.610.401
 | 
																													
																						| 13 | WEI Z K ,  GAO Y N ,  ZHANG X J , et al.  Adaptive marine traffic behaviour pattern recognition based on multidimensional dynamic time warping and DBSCAN algorithm[J]. Expert Systems with Applications, 2024, 238, 122229. doi: 10.1016/j.eswa.2023.122229
 | 
																													
																						| 14 | 陈涛, 刘福悦, 李金鑫, 等.  基于深度分割的端到端雷达信号分选[J]. 系统工程与电子技术, 2023, 45 (5): 1351- 1358. doi: 10.12305/j.issn.1001-506X.2023.05.11
 | 
																													
																						|  | CHEN T ,  LIU F Y ,  LI J X , et al.  End-to-end radar signal sorting based on deep segmentation[J]. Systems Engineering and Electronics, 2023, 45 (5): 1351- 1358. doi: 10.12305/j.issn.1001-506X.2023.05.11
 | 
																													
																						| 15 | FAN R Z ,  ZHU M T ,  ZHANG X K .  Multivariate time series feature extraction and clustering framework for multi-function radar work mode recognition[J]. Electronics, 2024, 13 (8): 1412. doi: 10.3390/electronics13081412
 | 
																													
																						| 16 | LANG P ,  FU X J ,  DONG J , et al.  A novel radar signals sorting method via residual graph convolutional network[J]. IEEE Signal Processing Letters, 2023, 30, 753- 757. doi: 10.1109/LSP.2023.3287404
 | 
																													
																						| 17 | ZHAO Y X ,  FENG H C ,  JIANG K L , et al.  Information fusion for radar signal sorting with the distributed reconnaissance receivers[J]. Remote Sensing, 2023, 15 (15): 3743. doi: 10.3390/rs15153743
 | 
																													
																						| 18 | ZHANG Z Z ,  SHI X R ,  GUO X Y , et al.  TR-RAGCN-AFF-RESS: a method for radar emitter signal sorting[J]. Remote Sensing, 2024, 16 (7): 1121. doi: 10.3390/rs16071121
 | 
																													
																						| 19 | LI H Q ,  LI Y L ,  HE C , et al.  Radar working state recognition based on the unsupervised and incremental method[J]. Journal of Sensors, 2021, 2021 (Pt. 7): 8673046. | 
																													
																						| 20 | LI P .  Research on radar signal recognition based on automatic machine learning[J]. Neural Computing and Applications, 2020, 32 (7): 1959- 1969. doi: 10.1007/s00521-019-04494-1
 | 
																													
																						| 21 | HAN S D ,  YAN L J ,  ZHANG Y X , et al.  Adaptive radar detection and classification algorithms for multiple coherent signals[J]. IEEE Trans.on Signal Processing, 2020, 69 (560): 572. | 
																													
																						| 22 | 司伟建, 张悦, 邓志安.  用于雷达信号分选的连通k近邻聚类算法[J]. 系统工程与电技术, 2023, 45 (8): 2463- 2470. | 
																													
																						|  | SI W J ,  ZHANG Y ,  DENG Z A .  Connected k-nearest neighbor clustering algorithm for radar signal sorting[J]. Systems Engineering and Electronics, 2023, 45 (8): 2463- 2470. | 
																													
																						| 23 | DADGARNIA A ,  SADEGHI M T .  A novel method of deinter leaving radar pulse sequences based on a modified DBSCAN algorithm[J]. China Communications, 2023, 20 (2): 198- 215. doi: 10.23919/JCC.2023.02.012
 | 
																													
																						| 24 | ANKERST M ,  BREUNIG M M ,  KRIEGEL H P , et al.  OPTICS: ordering points to identify the clustering structure[J]. ACM Sigmod Record, 1999, 28 (2): 49- 60. doi: 10.1145/304181.304187
 | 
																													
																						| 25 | WU C X ,  CHEN Y ,  DONG Y , et al.  VizOPTICS: getting insights into OPTICS via interactive visual analysis[J]. Compu-ters and Electrical Engineering, 2023, 107, 108624. doi: 10.1016/j.compeleceng.2023.108624
 | 
																													
																						| 26 | SCHUBERT E ,  SANDER J ,  ESTER M , et al.  DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42 (3): 19. | 
																													
																						| 27 | DASZY K M ,  WALCZAK B ,  MASSART D L .  Looking for natural patterns in data: Part 1. density-based approach[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 56 (2): 83- 92. doi: 10.1016/S0169-7439(01)00111-3
 | 
																													
																						| 28 | DENG Z ,  HU Y Y ,  ZHU M , et al.  A scalable and fast OPTICS for clustering trajectory big data[J]. Cluster Computing, 2015, 18, 549- 562. doi: 10.1007/s10586-014-0413-9
 | 
																													
																						| 29 | RODRIGUEZ A ,  LAIO A .  Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496. doi: 10.1126/science.1242072
 | 
																													
																						| 30 | ZHANG T ,  RAMAKRISHNAN R ,  LIVNY M .  BIRCH: an efficient data clustering method for very large databases[J]. ACM Sigmod Record, 1996, 25 (2): 103- 114. doi: 10.1145/235968.233324
 | 
																													
																						| 31 | WANG Y Z ,  QIAN J X ,  HASSAN M , et al.  Density peak clustering algorithms: a review on the decade 2014-2023[J]. Expert Systems with Applications, 2023, 238 (A): 121860. | 
																													
																						| 32 | AL M A ,  FARHAN A ,  FENG H C , et al.  An intelligent radar signal classification and deinterleaving method with unified residual recurrent neural network[J]. IET Radar, Sonar & Navigation, 2023, 17 (8): 1259- 1276. | 
																													
																						| 33 | AL-SAMARA M ,  BENNIS I ,  ABOUAISSA A , et al.  Complete outlier detection and classification framework for WSNs based on OPTICS[J]. Journal of Network and Computer Applications, 2023, 211, 103563. doi: 10.1016/j.jnca.2022.103563
 | 
																													
																						| 34 | DRIAS H ,  DRIAS Y ,  HOUACINE N A , et al.  Quantum OPTICS and deep self-learning on swarm intelligence algorithms for Covid-19 emergency transportation[J]. Soft Computing, 2023, 27 (18): 13181- 13200. doi: 10.1007/s00500-022-06946-8
 |