系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (10): 2843-2850.doi: 10.12305/j.issn.1001-506X.2021.10.18

• 传感器与信号处理 • 上一篇    下一篇

面向非协作多功能雷达的波形单元提取方法

阳榴1,2, 朱卫纲1,*, 吕守业2, 马爽2   

  1. 1. 航天工程大学电子与光学工程系, 北京 101416
    2. 北京遥感信息研究所, 北京 100192
  • 收稿日期:2020-05-02 出版日期:2021-10-01 发布日期:2021-11-04
  • 通讯作者: 朱卫纲
  • 作者简介:阳榴(1991—), 女, 助理工程师, 硕士研究生, 主要研究方向为雷达信号处理、航天信息处理|朱卫纲(1973—), 女, 教授, 博士, 主要研究方向为雷达信号处理、空间信息对抗、认知电子战|吕守业(1979—), 男, 研究员, 博士, 主要研究方向为电子信号数据处理、航天信息处理|马爽(1981—), 男, 助理研究员, 博士, 主要研究方向为航天信息处理
  • 基金资助:
    电子信息系统复杂电磁环境效应国家重点实验室项目(2020Z0203B)

Waveform unit extraction method for non-cooperative multi-function radar

Liu YANG1,2, Weigang ZHU1,*, Shouye LYU2, Shuang MA2   

  1. 1. Department of Electronic and Optical Engineering, Space Engineering University, Beijing 101416, China
    2. Beijing Institute of Remote Sensing, Beijing 100192, China
  • Received:2020-05-02 Online:2021-10-01 Published:2021-11-04
  • Contact: Weigang ZHU

摘要:

针对当前波形单元提取技术难以应用于非协作多功能雷达(multi-function radar, MFR)实侦数据的问题, 构建了基于MFR多参数序列的二分类模型, 在此基础上提出了一种自适应确定输入参数的密度聚类算法进行分类。该方法无需依靠MFR波形库的先验知识, 采用无监督学习的方式提取波形单元。同时, 充分利用多参数间的联合变化和数据集的整体分布信息提高算法鲁棒性, 并通过引入输入参数λ可对不同用户需求调整算法性能。仿真实验表明, 该算法可以有效地提取非协作MFR波形单元, 同时能够适应测量误差和脉冲丢失的干扰, 具有良好的鲁棒性和准确性, 有利于实际工程应用。

关键词: 非协作多功能雷达, 波形单元, 数据驱动, 无监督学习, 密度聚类

Abstract:

Aiming at the problems that the current waveform unit extraction technology is difficult to apply in the reconnaissance data of non-cooperative multi-function radar (MFR), a binary classification model based on MFR multi-parameter sequence is constructed, and a density clustering algorithm with adaptive input parameters for classification is proposed. This method does not need to rely on the prior knowledge of MFR waveform library, and uses unsupervised learning to extract waveform units. At the same time, making full use of the joint changes among multiple parameters and the overall distribution information of the data set to improve the robustness of the algorithm. The performance of the algorithm can be adjusted for different user requirements by setting the input parameter λ. Simulation results show that the proposed algorithm can effectively extract non-cooperative MFR waveform units, and can adapt to the interference caused by measurement error and pulse loss. It has good robustness and accuracy, and is conductive to practical engineering application.

Key words: non-cooperative multi-function radar, waveform unit, data-driven, unsupervised learning, density-based spatial clustering

中图分类号: