1 |
SKOLNIK M I . Introduction to radar systems[M]. New York: McGraw-Hill Book, 1980.
|
2 |
HUANG H P , LIU Q , SO H C , et al. Low-rank and row-sparse decomposition for joint DOA estimation and distorted sensor detection[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 4763- 4773.
doi: 10.1109/TAES.2023.3241886
|
3 |
ZHANG Z , SHI J P , WEN F Q . Phased compensation-based 2D-DOA estimation for EMVS-MIMO radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (2): 1299- 1308.
doi: 10.1109/TAES.2023.3335194
|
4 |
ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radar[C]//Proc. of the IEEE Radar Conference, 2006: 215-217.
|
5 |
LUO T , CHEN P , WANG Z , et al. A sparse Bayesian learning-based main-beam deceptive jamming suppression method using FDA-MIMO radar[J]. IEEE Trans. on Vehicular Technology, 2024, 73 (10): 14704- 14717.
doi: 10.1109/TVT.2024.3406778
|
6 |
HUANG J, TONG K F, BAKER C J. Frequency diverse array with beam scanning feature[C]//Proc. of the IEEE Antennas and Propagation Society International Symposium, 2008.
|
7 |
JIA W K , JAKOBSSON A , WANG W Q . Coherent FDA receiver and joint range-space-time processing[J]. IEEE Trans. on Antennas and Propagation, 2023, 72 (1): 745- 755.
|
8 |
WANG W Q , SO H C . Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Trans. on Signal Processing, 2014, 62 (8): 2000- 2011.
doi: 10.1109/TSP.2014.2305638
|
9 |
WANG W Q . Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Trans. on Antennas and Propagation, 2013, 61 (8): 4073- 4081.
doi: 10.1109/TAP.2013.2260515
|
10 |
WANG W Q , SO H C , FARINA A . An overview on time/frequency modulated array processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11 (2): 228- 246.
doi: 10.1109/JSTSP.2016.2627182
|
11 |
WANG W Q . Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (4): 3057- 3067.
doi: 10.1109/TAES.2014.120804
|
12 |
SAMMARTINO P F, BAKER C J, GRIFFITHS H D. Range-angle dependent waveform[C]//Proc. of the IEEE Radar Conference, 2010: 511-515.
|
13 |
SAMMARTINO P F , BAKER C J , GRIFFITHS H D . Frequency diverse MIMO techniques for radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49 (1): 201- 222.
doi: 10.1109/TAES.2013.6404099
|
14 |
LAN L , XU J W , LIAO G S , et al. Supression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (10): 11584- 11598.
doi: 10.1109/TVT.2020.3014689
|
15 |
LAN L , XU J W , LIAO G S , et al. Transceive beamforming with accurate nulling in FDA-MIMO radar for imaging[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (6): 4145- 4159.
doi: 10.1109/TGRS.2019.2961324
|
16 |
XU J W , LIAO G S , ZHU S Q , et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Trans. on Signal Processing, 2015, 63 (13): 3396- 3410.
doi: 10.1109/TSP.2015.2422680
|
17 |
CHEN H , SHAO H Z , WANG W Q . Joint sparsity-based range-angle-dependent beampattern synthesis for frequency diverse array[J]. IEEE Access, 2017, 5, 15152- 15161.
doi: 10.1109/ACCESS.2017.2731973
|
18 |
TAN M , WANG C Y , LI Z H . Correction analysis of frequency diverse array radar about time[J]. IEEE Trans. on Antennas and Propagation, 2020, 69 (2): 834- 847.
|
19 |
王伟伟, 吴孙勇, 许京伟, 等. 基于频率分集阵列的机载雷达距离模糊杂波抑制方法[J]. 电子与信息学报, 2015, 37 (10): 2321- 2327.
|
|
WANG W W , WU S Y , XU J W , et al. Range ambiguity clutter suppresion for aribone radar based on frequency diverse array[J]. Journal of Electronics & Information Technology, 2015, 37 (10): 2321- 2327.
|
20 |
BABUR G, AUBRY P, CHEVALIER F L. Improved calibration technique for the transmit beamforming by a coherent MIMO radar with collocated antennas[C]//Proc. of the 31st URSI General Assembly and Scientific Symposium, 2014.
|
21 |
RUBINSTEIN N , TABRIKIAN J . Frequency diverse array signal optimization: from non-cognitive to cognitive radar[J]. IEEE Trans. on Signal Processing, 2021, 69, 6206- 6220.
doi: 10.1109/TSP.2021.3122091
|
22 |
SCHMIDT R O . Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 270.
doi: 10.1109/TAP.1986.1143830
|
23 |
CUI C, YAN Y S, WANG W Q, et al. Resolution threshold of MUSIC algorithm for FDA-MIMO radar[C]//Proc. of the IEEE Radar Conference, 2018: 230-234.
|
24 |
GUI R H , WANG W Q , PAN Y , et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 76- 89.
doi: 10.1109/JSTSP.2018.2793761
|
25 |
朱晶晶, 朱圣棋, 廖桂生, 等. 相控阵和频率分集阵双模式雷达联合目标检测[J]. 系统工程与电子技术, 2023, 45 (5): 1342- 1350.
doi: 10.12305/j.issn.1001-506X.2023.05.10
|
|
ZHU J J , ZHU S Q , LIAO G S , et al. Joint target detection based on phased array and frequency diverse array dual-mode radar[J]. Systems Engineering and Electronics, 2023, 45 (5): 1342- 1350.
doi: 10.12305/j.issn.1001-506X.2023.05.10
|
26 |
王文钦, 张顺生. 频控阵雷达技术研究进展综述[J]. 雷达学报, 2022, 11 (5): 831- 849.
|
|
WANG W Q , ZHANG S S . Recent advances in frequency diverse array radar techniques[J]. Journal of Radars, 2022, 11 (5): 831- 849.
|
27 |
ZHENG G M , SONG Y W . Signal model and method for joint angle and range estimation of low-elevation target in meter-wave FDA-MIMO radar[J]. IEEE Communications Letters, 2022, 26 (2): 449- 453.
doi: 10.1109/LCOMM.2021.3126935
|
28 |
ZHOU L , YE K , QI J , et al. DOA estimation based on pseudo-noise subspace for relocating enhanced nested array[J]. IEEE Signal Processing Letters, 2022, 29, 1858- 1862.
doi: 10.1109/LSP.2022.3199149
|
29 |
WU X H , YANG X , JIA X Y , et al. A gridless DOA estimation method based on convolutional neural network with Toeplitz prior[J]. IEEE Signal Processing Letters, 2022, 29, 1247- 1251.
doi: 10.1109/LSP.2022.3176211
|
30 |
LI W L , ZHU Z Y , GAO W G , et al. Stability and super-resolution of MUSIC and ESPRIT for multi-snapshot spectral estimation[J]. IEEE Trans. on Signal Processing, 2022, 70, 4555- 4570.
doi: 10.1109/TSP.2022.3204454
|