系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1453-1460.doi: 10.12305/j.issn.1001-506X.2025.05.08

• 传感器与信号处理 • 上一篇    

隧道环境毫米波雷达目标识别与分类算法

姜智杰1,2, 宋恒3,*, 胡楠3, 段兰茜3, 曹平1,4   

  1. 1. 中国科学技术大学核探测与核电子学国家重点实验室, 安徽 合肥 230026
    2. 中国科学技术大学近代物理系, 安徽 合肥 230026
    3. 中铁四局集团有限公司管理与技术研究院, 安徽 合肥 230041
    4. 中国科学技术大学核科学技术学院, 安徽 合肥 230026
  • 收稿日期:2024-04-23 出版日期:2025-06-11 发布日期:2025-06-18
  • 通讯作者: 宋恒
  • 作者简介:姜智杰 (1996—), 男, 博士研究生, 主要研究方向为毫米波雷达信号处理
    宋恒 (1979—), 男, 正高级工程师, 博士, 主要研究方向为智能信息处理
    胡楠 (1996—), 男, 助理工程师, 硕士, 主要研究方向为人工智能
    段兰茜 (1997—), 女, 助理工程师, 硕士, 主要研究方向为毫米波雷达硬件系统
    曹平 (1980—), 男, 副教授, 博士, 主要研究方向为高速数据采集、读出及实时处理
  • 基金资助:
    中铁四局集团有限公司(2023-48)

Target recognition and classification algorithm of MMW radar in tunnel

Zhijie JIANG1,2, Heng SONG3,*, Nan HU3, Lanxi DUAN3, Ping CAO1,4   

  1. 1. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
    2. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
    3. Management and Technology Institute, China Railway No.4 Engineering Group CO., LTD, Hefei 230041, China
    4. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
  • Received:2024-04-23 Online:2025-06-11 Published:2025-06-18
  • Contact: Heng SONG

摘要:

毫米波雷达具有全天候、高精度、低成本、无感式的优点, 在隧道环境下进行安全监测具有极大的优势。但由于隧道多径干扰严重, 经典信号处理算法目标识别错误率高, 三维卷积深度学习算法计算复杂度高, 实时性差, 阻碍了毫米波雷达在隧道中的应用。基于此, 提出一种高效的深度学习算法方案, 可以实现人员、车辆等目标的高精度实时定位和分类。算法采用信号处理方法对雷达中频数据进行多维度压缩编码;使用Mamba网络针对雷达时空序列数据进行特征提取;使用视场数据热图估计目标位置;使用目标位置局部区域特征估计目标类别, 避免不相干区域信号干扰, 提高目标识别精准率。算法基于二维卷积设计, 建立雷达数据到目标位置及类别的非线性映射关系, 可有效控制计算复杂度。隧道试验表明, 算法的平均交并比(mean intersection over union, mIoU)、平均精准率(average precision, AP)和速度分别为0.68, 65.26%, 22.5 ms/frame, 与三维卷积CenterRadarNet算法相比, mIoU降低3%, AP提升9%, 速度提升53.3%。证明算法具有良好性能, 在实际工程中具有应用价值。

关键词: 毫米波雷达, 目标识别, 实时, 深度学习, 隧道

Abstract:

Millimeter wave (MMW) radar exhibits all-weather capability, high precision, low cost, and non-contact sensing, rendering it highly suitable for safety monitoring in tunnels. However, due to severe multipath interference in tunnels, classical signal processing algorithms have a high error rate in target recognition. The high computational complexity and poor real-time performance of three-dimensional (3D) convolutional deep learning algorithms hinder the application of MMW radar in tunnels. To regard this, an efficient deep-learning algorithm scheme is proposed, which can achieve high-precision real-time positioning and classification of targets such as individuals, vehicles, and other targets. The algorithm utilizes a signal processing method to compress and encode the radar intermediate frequency data across multiple dimensions, uses Mamba network to extract features from radar spatio-temporal sequence data, uses heatmap of field data to estimate target location, and uses only local regional features of target location to estimate target category, avoiding incoherent regional signal interference and improving target recognition accuracy. The algorithm is designed based on two-dimensional (2D) convolution, and a nonlinear mapping relationship between radar data and target location and category is established, effectively managing computational complexity. Experiments in the tunnel show that the mean intersection over union (mIoU), average precision (AP) and speed of the algorithm are respectively 0.68, 65.26%, 22.5 ms/frame, compared with the 3D convolutional CenterRadarNet algorithm, mIoU is reduced by 3%, AP is increased by 9%, and speed is increased by 53.3%, which proves that the algorithm has good performance and has application value in actual application.

Key words: millimeter wave (MMW) radar, target recognition, real time, deep learning, tunnel

中图分类号: