1 |
FENG X J, HUO C Y, ZHU C X, et al. Multi-dimensional feature fusion based on narrow-band RCS for UAV target recognition[C]//Proc. of the Cross Strait Radio Science & Wireless Technology Conference, 2022.
|
2 |
CHEN V C , LI F Y , SHEN S H , et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21.
|
3 |
陈一畅, 熊鑫, 王万田. 基于稀疏FrFT的窄带雷达目标架次识别方法[J]. 系统工程与电子技术, 2021, 43 (8): 2129- 2136.
doi: 10.12305/j.issn.1001-506X.2021.08.14
|
|
CHEN Y C , XIONG X , WANG W T . Target sortie identification method of narrow-band radar based on sparse fractional Fourier transform[J]. Systems Engineering and Electronics, 2021, 43 (8): 2129- 2136.
doi: 10.12305/j.issn.1001-506X.2021.08.14
|
4 |
WANG W T , TANG Z Y , CHEN Y C , et al. Aircraft target classification for conventional narrow-band radar with multi-wave gates sparse echo data[J]. Remote Sensing, 2019, 11 (22): 2700- 2712.
doi: 10.3390/rs11222700
|
5 |
XIA S Q , ZHANG C W , CAI W Y , et al. Aircraft target classification method for conventional narrow-band radar based on micro-Doppler effect[J]. Mathematical Problems in Engineering, 2022, 3154854.
|
6 |
林青松, 胡卫东, 虞华, 等. 低分辨雷达回波序列轮廓像目标分类方法研究[J]. 现代雷达, 2005, 27 (3): 24- 28.
|
|
LIN Q S , HU W D , YU H , et al. A study of target classification method based on low-resolution radar return sequences image profile[J]. Modern Radar, 2005, 27 (3): 24- 28.
|
7 |
梁复台, 李宏权, 张晨浩. 基于深度迁移学习的窄带雷达群目标识别方法[J]. 兵器装备工程学报, 2020, 41 (4): 143- 147.
|
|
LIANG F T , LI H Q , ZHANG C H . Narrow-band radar unresolved targets recognition method based on deep transfer learning[J]. Journal of Ordnance Engineering, 2020, 41 (4): 143- 147.
|
8 |
GAO Y , ZHOU Y , WANG Y , et al. Narrow-band radar automatic target recognition based on a hierarchical fusing network with multidomain features[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (6): 1039- 1043.
|
9 |
REN K , DU L , WANG B S , et al. Statistical compressive sensing and feature extraction of time-frequency spectrum from narrow-band radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (1): 326- 342.
|
10 |
WENGROWSKI E , PURRI M , DANA K , et al. Deep CNNs as a method to classify rotating objects based on monostatic RCS[J]. IET Radar, Sonar & Navigation, 2019, 13 (7): 1092- 1100.
|
11 |
TIAN X D , BAI X R , ZHOU F . Recognition of micro-motion space targets based on attention-augmented cross-modal feature fusion recognition network[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61 (1): 5104909.
|
12 |
GAO Y , ZHOU Y , WANG Y , et al. Narrow-band radar automatic target recognition based on a hierarchical fusing network with multidomain features[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (6): 1039- 1043.
|
13 |
MCLACHLAN G J . Mahalanobis distance[J]. Resonance, 1999, 4 (6): 20- 26.
|
14 |
TIAN L , CHEN B , GUO Z K , et al. Open set HRRP recognition with few samples based on multi-modality prototypical networks[J]. Signal Processing: the Official Publication of the European Association for Signal Processing, 2022, 193, 108391.
|
15 |
PANG T Y, DU C, ZHU J. Max-mahalanobis linear discriminant analysis networks[C]//Proc. of the International Conference on Machine Learning, 2018: 4016-4025.
|
16 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19.
|
17 |
胡明春, 王建明, 孙俊, 等. 雷达目标识别原理与实验技术[M]. 北京: 国防工业出版社, 2017: 12- 13.
|
|
HU M C , WANG J M , SUN J , et al. Principle and experiments of radar target recognition technology[M]. Beijing: National Defense Industry Press, 2017: 12- 13.
|
18 |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial nets[J]. Communications of the ACM, 2014, 11 (64): 2672- 2680.
|
19 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
20 |
CHEN J , XU S Y , CHEN Z P . Convolutional neural network for classifying space target of the same shape by using RCS time series[J]. IET Radar, Sonar & Navigation, 2018, 12 (11): 1268- 1275.
|
21 |
CHEN J, XU S Y, HU P J, et al. Precession period extraction of axisymmetric space target from RCS sequence via convolutional neural network[C]//Proc. of the Progress in Electromagnetics Research Symposium, 2018.
|
22 |
AL-SHALABI L , SHAABAN Z , KASASBEH B . Data mining: a preprocessing engine[J]. Journal of Computer Science, 2006, 2 (9): 735- 739.
|
23 |
TAX D M J , DUIN R P W . Support vector data description[J]. Machine Learning, 2004, 54 (1): 45- 66.
|
24 |
PARVIN H , ALIZADEH H , MINAEIBIDGOLI B . MKNN: modified k-nearest neighbor[J]. Lecture Notes in Engineering & Computer Science, 2008, 2173 (1): 2054- 2062.
|
25 |
RUFF L, VANDERMEULEN R A, NICO G, et al. Deep one-class classification[C]//Proc. of the International Conference on Machine Learning, 2018: 4393-4402.
|
26 |
WAN J W , CHEN B , XU B , et al. Convolutional neural networks for radar HRRP target recognition and rejection[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019, 5.
|
27 |
LEE K, MAJI S, RAVICHANDRAN A, et al. Meta-learning with differentiable convex optimization[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10657-10665.
|
28 |
AKITA T, MITA S. Object tracking and classification using millimeter-wave radar based on LSTM[C]//Proc. of the IEEE Intelligent Transportation Systems Conference, 2019: 1110-1115.
|
29 |
LAURENS V D M , HINTON G . Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605.
|
30 |
KOBAK D , LINDERMAN G C . Initialization is critical for preserving global data structure in both t-SNE and UMAP[J]. Nature Biotechnology, 2021, 39 (2): 156- 157.
|