1 |
LI L , LIU Z , LI T . Radar high resolution range profile recognition via multi-SV method[J]. Journal of Systems Engineering and Electronics, 2017, 28 (5): 879- 889.
doi: 10.21629/JSEE.2017.05.07
|
2 |
张一凡, 张双辉, 刘永祥, 等. 基于注意力机制的堆叠LSTM网络雷达HRRP序列目标识别方法[J]. 系统工程与电子技术, 2021, 43 (10): 2775- 2781.
doi: 10.12305/j.issn.1001-506X.2021.10.09
|
|
ZHANG Y F , ZHANG S H , LIU Y X , et al. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network[J]. Systems Engineering and Electronics, 2021, 43 (10): 2775- 2781.
doi: 10.12305/j.issn.1001-506X.2021.10.09
|
3 |
王彩云, 黄盼盼, 李晓飞, 等. 基于AEPSO-SVM算法的雷达HRRP目标识别[J]. 系统工程与电子技术, 2019, 41 (9): 1984- 1989.
|
|
WANG C Y , HUANG P P , LI X F , et al. Radar HRRP target recognition based on AEPSO-SVM algorithm[J]. Systems Engineering and Electronics, 2019, 41 (9): 1984- 1989.
|
4 |
ZENG Z Q , SUN J P , HAN Z , et al. Radar HRRP target recognition method based on multi-input convolutional gated recurrent unit with cascaded feature fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4026005.
|
5 |
张国令, 吴崇明, 李睿, 等. 基于一维堆叠池化融合卷积自编码器的HRRP目标识别方法[J]. 系统工程与电子技术, 2021, 43 (12): 3533- 3541.
doi: 10.12305/j.issn.1001-506X.2021.12.15
|
|
ZHANG G L , WU C M , LI R , et al. HRRP target recognition method based on one-dimensional stacked pooling fusion convolutional autoencoder[J]. Systems Engineering and Electronics, 2021, 43 (12): 3533- 3541.
doi: 10.12305/j.issn.1001-506X.2021.12.15
|
6 |
范学满, 胡生亮, 贺静波. 对海雷达目标识别中全极化HRRP的特征提取与选择[J]. 电子与信息学报, 2016, 38 (12): 3261- 3268.
|
|
FAN X M , HU S L , HE J B . Feature extraction and selection of full polarization HRRP in target recognition process of maritime surveillance radar[J]. Journal of Electronics & Information Technology, 2016, 38 (12): 3261- 3268.
|
7 |
WAN J W , CHEN B , XU B , et al. Convolutional neural networks for radar HRRP target recognition and rejection[J]. EURASIP Journal on Advances in Signal Processing, 2019, 5.
|
8 |
DING B C, CHEN P H. HRRP feature extraction and recognition method of radar ground target using convolutional neural network[C]//Proc. of the International Conference on Electromagnetics in Advanced Applications, 2019: 658-661.
|
9 |
MA M Y , LIU K , LUO X , et al. Multi-view polarization HRRP target recognition based on convolutional neural network[J]. IoT as a Service, 2021, 346 (1): 710- 720.
|
10 |
PAN M , LIU A L , YU Y Z , et al. Radar HRRP target recognition model based on a stacked CNN-Bi-RNN with attention mechanism[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 5100814.
|
11 |
DU C , TIAN L , CHEN B , et al. Region factorized recurrent attentional network with deep clustering for radar HRRP target recognition[J]. Signal Processing, 2021, 183, 108010.
doi: 10.1016/j.sigpro.2021.108010
|
12 |
LUNDEN J, KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]//Proc. of the IEEE Radar Conference, 2016.
|
13 |
卢旺, 张雅声, 徐灿, 等. 基于双谱-谱图特征和深度卷积神经网络的HRRP目标识别方法[J]. 系统工程与电子技术, 2020, 42 (8): 1703- 1709.
|
|
LU W , ZHANG Y S , XU C , et al. HRRP target recognition method based on bispectrum-spectrogram feature and deep convolutional neural network[J]. Systems Engineering and Electronics, 2020, 42 (8): 1703- 1709.
|
14 |
JITHESH V, SAGAYARAJ M J, SRINIVASA K G. LSTM recurrent neural networks for high resolution range profile based radar target classification[C]//Proc. of the 3rd International Conference on Computational Intelligence & Communication Technology, 2017.
|
15 |
CHEN J , DU L , GUO G B , et al. Target attentional CNN for radar automatic target recognition with HRRP[J]. Signal Processing, 2022, 196 (1): 108497.
|
16 |
WAN J W , CHEN B , LIU Y Q , et al. Recognizing the HRRP by combining CNN and BiRNN with attention mechanism[J]. IEEE Access, 2020, 8, 20828- 20837.
doi: 10.1109/ACCESS.2020.2969450
|
17 |
ZHANG G L , WANG X D , LI R , et al. Research on HRRP target recognition based on one-dimensional stack convolutional autoencoder[J]. Journal of Physics: Conference Series, 2020, 1651 (1): 012172.
doi: 10.1088/1742-6596/1651/1/012172
|
18 |
翟颖, 陈渤. 基于稳健变分自编码模型的雷达高分辨距离像目标识别算法[J]. 电子学报, 2020, 48 (6): 1149- 1155.
|
|
ZHAI Y , CHEN B . Robust variational auto-encoder for radar HRRP target recognition[J]. Acta Electronica Sinica, 2020, 48 (6): 1149- 1155.
|
19 |
LI R , WANG X D , QUAN W , et al. A staked discriminative auto-encoder based on center loss for radar target HRRP recognition[J]. Journal of Physics: Conference Series, 2020, 1651 (1): 012153.
doi: 10.1088/1742-6596/1651/1/012153
|
20 |
LIAO L Y , DU L , CHEN J . Class factorized complex variational auto-encoder for HRR radar target recognition[J]. Signal Processing, 2021, 182 (1): 107932.
|
21 |
VINCENT P , LAROCHELLE H , LAJOIE I , et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11 (12): 3371- 3408.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
23 |
ZHAO M H , ZHONG S S , FU X Y , et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (7): 4681- 4690.
doi: 10.1109/TII.2019.2943898
|