| 1 | CHEN J ,  XU S ,  CHEN Z .  Convolutional neural network for classifying space target of the same shape by using RCS time series[J]. IET Radar, Sonar & Navigation, 2018, 12 (11): 1268- 1275. | 
																													
																						| 2 | MA Y ,  HU M F ,  LU H Z , et al.  Recurrent neural networks for discrimination of exo-atmospheric targets based on infrared radiation signature[J]. Infrared Physics & Technology, 2019, 96 (1): 123- 132. | 
																													
																						| 3 | CHOI I O ,  PARK S H ,  KIM M , et al.  Efficient discrimination of ballistic targets with micro-motions[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 22 (3): 1- 17. | 
																													
																						| 4 | PERSICO A R ,  ILIOUDIS C V ,  CLEMENTE C , et al.  Novel classification algorithm for ballistic target based on HRRP frame[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (6): 3168- 3189. doi: 10.1109/TAES.2019.2905281
 | 
																													
																						| 5 | 柴晶, 刘宏伟, 保铮.  加权KNN分类器在HRRP库外目标拒判中的应用[J]. 系统工程与电子技术, 2010, 32 (4): 718- 723. | 
																													
																						|  | CHAI J ,  LIU H W ,  BAO Z .  Application of a weighted KNN classifier for HRRP out-of-database target rejection[J]. Systems Engineering and Electronics, 2010, 32 (4): 718- 723. | 
																													
																						| 6 | 翟夕阳, 王晓丹, 李睿, 等.  基于二叉树直觉模糊SVM的弹道目标HRRP识别[J]. 火力与指挥控制, 2017, 42 (10): 64- 68. | 
																													
																						|  | ZHAI X Y ,  WANG X D ,  LI R , et al.  Ballistic target recognition of HRRP based on intuitionistic fuzzy binary tree SVM[J]. Fire Control & Command Control, 2017, 42 (10): 64- 68. | 
																													
																						| 7 | 李睿, 王晓丹, 雷蕾, 等.  结合多分类RVM和DS的弹道目标HRRP融合识别方法[J]. 信息与控制, 2017, 46 (1): 65- 71, 102. | 
																													
																						|  | LI R ,  WANG X D ,  LEI L , et al.  Ballistic target HRRP fusion recognition combining multi-class relevance vector machine and DS[J]. Information and Control, 2017, 46 (1): 65- 71, 102. | 
																													
																						| 8 | WANG Y H ,  BI X J ,  CHEN W , et al.  Deep forest for radar HRRP recognition[J]. The Journal of Engineering, 2019, 2019 (21): 8018- 8021. doi: 10.1049/joe.2019.0723
 | 
																													
																						| 9 | WANG L Y, CUI Z Y, CAO Z J, et al. Fine-grained gesture recognition based on high resolution range profiles of terahertz radar[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 1470-1473. | 
																													
																						| 10 | WANG S X, LI J B, WANG Y H, et al. Radar HRRP target recognition based on gradient boosting decision tree[C]//Proc.of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2016: 1013-1017. | 
																													
																						| 11 | LIU W B ,  YUAN J W ,  ZHANG G , et al.  HRRP target recognition based on kernel joint discriminant analysis[J]. Journal of Systems Engineering and Electronics, 2019, 30 (4): 703- 708. | 
																													
																						| 12 | YAN H Q, ZHANG Z H, XIONG G, et al. Radar HRRP recognition based on sparse denoising autoencoder and multi-layer perceptron deep model[C]//Proc.of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, 2016: 283-288. | 
																													
																						| 13 | ZHAO F X ,  LIU Y X ,  HUO K , et al.  Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18 (1): 173. | 
																													
																						| 14 | PAN M ,  JIANG J ,  KONG Q P , et al.  Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1609- 1613. doi: 10.1109/LGRS.2017.2726098
 | 
																													
																						| 15 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc.of the Advances in Neural Information Processing Systems, 2012: 1097-1105. | 
																													
																						| 16 | 董志鹏, 王密, 李德仁, 等.  遥感影像目标的尺度特征卷积神经网络识别法[J]. 测绘学报, 2019, 48 (10): 1285- 1295. | 
																													
																						|  | DONG Z P ,  WANG M ,  LI D R , et al.  Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features[J]. Acta Geodaetica Et Cartographica Sinica, 2019, 48 (10): 1285- 1295. | 
																													
																						| 17 | SRIVASTAVA N ,  HINTON G ,  KRIZHEVSKY A , et al.  Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958. | 
																													
																						| 18 | LUO L C, XIONG Y H, LIU Y, et al. Adaptive gradient methods with dynamic bound of learning rate[EB/OL].[2020-04-22]. https://arxiv.org/abs/1902.09843. | 
																													
																						| 19 | RUDER S. An overview of gradient descent optimization algorithms[EB/OL].[2020-04-22]. http://arxiv.org/abs/1609.04747. | 
																													
																						| 20 | DUCHI J ,  HAZAN E ,  SINGER Y .  Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12 (7): 2121- 2159. |