系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3346-3356.doi: 10.12305/j.issn.1001-506X.2022.11.08
刘旗, 张新禹*, 刘永祥
收稿日期:
2021-06-22
出版日期:
2022-10-26
发布日期:
2022-10-29
通讯作者:
张新禹
作者简介:
刘旗(1996—), 男, 硕士研究生, 主要研究方向为深度学习、小样本学习、元学习及其在雷达目标识别领域的应用|张新禹(1990—), 男, 副教授, 硕士研究生导师, 博士, 主要研究方向为阵列信号处理、自动目标检测和波形优化|刘永祥(1976—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为雷达目标识别、时频分析和微动
基金资助:
Qi LIU, Xinyu ZHANG*, Yongxiang LIU
Received:
2021-06-22
Online:
2022-10-26
Published:
2022-10-29
Contact:
Xinyu ZHANG
摘要:
为了解决传统合成孔径雷达(synthetic aperture radar, SAR)目标识别方法在小样本条件下泛化能力差、识别准确率低的问题, 通过在匹配网络的基础上引入权重门控单元和多尺度特征提取模块, 提出了基于门控多尺度匹配网络的小样本SAR目标识别方法。在该方法中, 多尺度特征提取模块能够提取匹配网络不同卷积层的多尺度特征, 权重门控单元能够根据不同的识别任务赋予特征不同的权重大小, 实现根据具体任务选择最具代表性的目标特征, 从而以该特征为主导完成目标识别任务。在运动和静止目标获取与识别(the moving and stationary target acquisition and recognition, MSTAR)数据集上对提出的方法进行了验证, 实验结果表明,所提方法较其他3种小样本学习方法和两种小样本SAR目标识别方法表现出了一定的优越性, 而且所提方法经实验验证在噪声环境下表现出了一定的鲁棒性。
中图分类号:
刘旗, 张新禹, 刘永祥. 基于门控多尺度匹配网络的小样本SAR目标识别[J]. 系统工程与电子技术, 2022, 44(11): 3346-3356.
Qi LIU, Xinyu ZHANG, Yongxiang LIU. Few-shot SAR target recognition based on gated multi-scale matching network[J]. Systems Engineering and Electronics, 2022, 44(11): 3346-3356.
1 | BARTON D K , LEONOV S A . Radar technology encyclopedia[M]. New York: Artech house, 1998. |
2 | 胡利平. 合成孔径雷达图像目标识别技术研究[D]. 西安: 西安电子科技大学, 2009. |
HU L P. Study on SAR images target recognition[D]. Xi'an: Xidian University, 2009. | |
3 | 庞礴. 多通道SAR成像理论与方法研究[D]. 长沙: 国防科学技术大学, 2014. |
PANG B. Study on the imaging theory and method of multi-channel SAR[D]. Changsha: National University of Defense and Technology, 2014. | |
4 |
LI Y Y , PENG C , CHEN Y Q , et al. A deep learning method for change detection in synthetic aperture radar images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (8): 5751- 5763.
doi: 10.1109/TGRS.2019.2901945 |
5 |
RAN L , LIU Z , LI T , et al. Extension of map-drift algorithm for highly squinted SAR autofocus[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (9): 4032- 4044.
doi: 10.1109/JSTARS.2017.2702621 |
6 | SHI L J, KARVONEN J, CHENG B, et al. Sea ice thickness retrieval from SAR imagery over Bohai sea[C]//Proc. of the IEEE Geoscience and Remote Sensing Symposium, 2014: 4864-4867. |
7 | 陈冬, 句彦伟. 基于改进型YOLOv3的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2021, 43 (4): 937- 943. |
CHEN D , JU Y W . Ship detection in SAR image based on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43 (4): 937- 943. | |
8 |
胡利平, 李胜, 殷红成. 基于差准则的二维非参数特征分析的SAR目标识别[J]. 系统工程与电子技术, 2015, 37 (10): 2250- 2254.
doi: 10.3969/j.issn.1001506X.2015.10.09 |
HU L P , LI S , YIN H C . 2-dimensional nonparametric feature analysis based on difference criterion and SAR target recognition[J]. Systems Engineering and Electronics, 2015, 37 (10): 2250- 2254.
doi: 10.3969/j.issn.1001506X.2015.10.09 |
|
9 | ZHANG J S , XING M D , XIE Y Y . FEC: a feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59 (3): 2174- 2187. |
10 |
CHEN L , JIANG X , LI Z , et al. Feature-enhanced speckle reduction via low-rank and space-angle continuity for circular SAR target recognition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (11): 7734- 7752.
doi: 10.1109/TGRS.2020.2983420 |
11 | OH J , YOUM G Y , KIM M . SPAM-net: a CNN-based SAR target recognition network with pose angle marginalization learning[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2020, 31 (2): 701- 714. |
12 | GUO Y C , DU L , WEI D , et al. Robust sar automatic target recognition via adversarial learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14, 716- 729. |
13 | YANG R , HU Z T , LIU Y M , et al. A novel polarimetric SAR classification method integrating pixel-based and patch-based classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17 (3): 431- 435. |
14 |
BAI X R , XUE R H , WANG L , et al. Sequence SAR image classification based on bidirectional convolution-recurrent network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (11): 9223- 9235.
doi: 10.1109/TGRS.2019.2925636 |
15 | ZHU H L , LIN N , LEUNG H , et al. Target classification from SAR imagery based on the pixel grayscale decline by graph convolutional neural network[J]. IEEE Sensors Letters, 2020, 4 (6): 1002204. |
16 |
CHEN L , JIANG X , LI Z , et al. Feature-enhanced speckle reduction via low-rank and space-angle continuity for circular SAR target recognition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (11): 7734- 7752.
doi: 10.1109/TGRS.2020.2983420 |
17 |
ZHAO Q , PRINCIPE J C . Support vector machines for SAR automatic target recognition[J]. IEEE Trans.on Aerospace and Electronic Systems, 2001, 37 (2): 643- 654.
doi: 10.1109/7.937475 |
18 | HUANG X Y , QIAO H , ZHANG B . SAR target configuration recognition using tensor global and local discriminant embedding[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13 (2): 222- 226. |
19 |
EL-DARYMLI K , MCGUIRE P , GILL E W , et al. Holism-based features for target classification in focused and complex-valued synthetic aperture radar imagery[J]. IEEE Trans.on Aerospace and Electronic Systems, 2016, 52 (2): 786- 808.
doi: 10.1109/TAES.2015.140757 |
20 |
ROY S , MENAPACE W , OEI S , et al. Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound[J]. IEEE Trans.on Medical Imaging, 2020, 39 (8): 2676- 2687.
doi: 10.1109/TMI.2020.2994459 |
21 | DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255. |
22 | GIRSHICK R , DONAHUE J , DARRELL T , et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 38 (1): 142- 158. |
23 |
TU Y H , DU J , LEE C H . Speech enhancement based on teacher-student deep learning using improved speech presence probability for noise-robust speech recognition[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing,, 2019, 27 (12): 2080- 2091.
doi: 10.1109/TASLP.2019.2940662 |
24 |
ZHANG Z M , WANG H P , XU F , et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (12): 7177- 7188.
doi: 10.1109/TGRS.2017.2743222 |
25 |
WANG J , ZHENG T , LEI P , et al. Ground target classification in noisy SAR images using convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (11): 4180- 4192.
doi: 10.1109/JSTARS.2018.2871556 |
26 |
WANG N , WANG Y H , LIU H W , et al. Feature-fused SAR target discrimination using multiple convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (10): 1695- 1699.
doi: 10.1109/LGRS.2017.2729159 |
27 | TANG J X, ZHANG F, ZHOU Y S, et al. A fast inference networks for SAR target few-shot learning based on improved siamese networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 1212-1215. |
28 |
WANG L , BAI X R , GONG C , et al. Hybrid inference network for few-shot SAR automatic target recognition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (11): 9257- 9269.
doi: 10.1109/TGRS.2021.3051024 |
29 | FU K , ZHANG T F , ZHANG Y , et al. Few-shot SAR target classification via metalearning[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 2000314. |
30 | ROSTAMI M, KOLOURI S, EATON E, et al. SAR image classification using few-shot cross-domain transfer learning[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019. |
31 | WANG C C , GU H , SU W M . SAR image classification using contrastive learning and pseudo-labels with limited data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4012505. |
32 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proc. of the International Conference on Machine Learning, 2017: 1126-1135. |
33 | RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proc. of the International Conference of Learning Representation, 2016. |
34 | VINYALS O , BLUNDELL C , LILLICRAP T , et al. Matching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016, 29, 3630- 3638. |
35 | 高飞, 赵洁琼, 林翀, 等. 基于距离度量学习的SAR图像识别方法[J]. 北京理工大学学报, 2021, 41 (3): 334- 340. |
GAO F , ZHAO J Q , LIN C , et al. A SAR image recognition method based on distance metric learning[J]. Transactions of Beijing Institute of Technology, 2021, 41 (3): 334- 340. | |
36 | 应自炉, 宣晨, 翟懿奎, 等. 面向小样本SAR图像识别的自注意力多尺度特征融合网络[J]. 信号处理, 2020, 36 (11): 1846- 1858. |
YING Z L , XUAN C , ZHAI Y K , et al. Self-attention multiscale feature fusion network for small sample SAR image recognition[J]. Journal of Signal Processing, 2020, 36 (11): 1846- 1858. | |
37 |
LIN Z , JI K F , KANG M , et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (7): 1091- 1095.
doi: 10.1109/LGRS.2017.2698213 |
38 | 汪航, 陈晓, 田晟兆, 等. 基于小样本学习的SAR图像识别[J]. 计算机科学, 2020, 47 (5): 124- 128. |
WANG H , CHEN X , TIAN S Z , et al. SAR image recognition based on few-shot learning[J]. Computer Science, 2020, 47 (5): 124- 128. | |
39 | LIU T R , LUO W H , MA L , et al. Coupled network for robust pedestrian detection with gated multi-layer feature extraction and deformable occlusion handling[J]. IEEE Trans.on Image Processing, 2020, 30, 754- 766. |
40 | HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023. |
[1] | 苗添, 曾虹程, 王贺, 陈杰. 基于迭代阈值分割的星载SAR洪水区域快速提取[J]. 系统工程与电子技术, 2022, 44(9): 2760-2768. |
[2] | 郭军成, 万刚, 胡欣杰, 严发宝, 王帅. 太阳射电频谱爆发识别的元学习方法[J]. 系统工程与电子技术, 2022, 44(8): 2410-2418. |
[3] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[4] | 孙晶明, 虞盛康, 孙俊. 基于元学习的雷达小样本目标识别方法及改进[J]. 系统工程与电子技术, 2022, 44(6): 1839-1845. |
[5] | 傅东宁, 廖桂生, 黄岩, 张邦杰, 王幸. 基于图拉普拉斯嵌入的合成孔径雷达时变窄带干扰抑制算法[J]. 系统工程与电子技术, 2022, 44(6): 1846-1853. |
[6] | 盖明慧, 张苏, 孙卫天, 倪育德, 杨磊. 复数兼容全变分SAR目标结构特征增强[J]. 系统工程与电子技术, 2022, 44(6): 1862-1872. |
[7] | 徐安林, 张毓, 周峰. 基于Beta过程的高分辨ISAR成像[J]. 系统工程与电子技术, 2022, 44(6): 1873-1879. |
[8] | 纪朋徽, 代大海, 邢世其, 冯德军. 密集虚假运动目标生成方法[J]. 系统工程与电子技术, 2022, 44(5): 1502-1511. |
[9] | 刘丰恺, 黄大荣, 郭新荣, 冯存前. 基于吕氏分布的机动目标参数化平动补偿方法[J]. 系统工程与电子技术, 2022, 44(4): 1166-1173. |
[10] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[11] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[12] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. |
[13] | 杨磊, 张苏, 盖明慧, 方澄. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808-818. |
[14] | 王俊杰, 冯德军, 胡卫东. 基于时变材料的合成孔径雷达图像二维调制方法[J]. 系统工程与电子技术, 2022, 44(2): 455-462. |
[15] | 方澄, 李慧娟, 路稳, 宋玉蒙, 杨磊. 基于形态学自适应分块的高分辨SAR多特征增强算法[J]. 系统工程与电子技术, 2022, 44(2): 470-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||