系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 641-649.doi: 10.12305/j.issn.1001-506X.2025.02.30

• 通信与网络 • 上一篇    

基于多尺度融合神经网络的同频同调制单通道盲源分离算法

付卫红, 张鑫钰, 刘乃安   

  1. 西安电子科技大学通信工程学院, 陕西 西安 710071
  • 收稿日期:2023-12-12 出版日期:2025-02-25 发布日期:2025-03-18
  • 通讯作者: 付卫红
  • 作者简介:付卫红(1979—), 女, 教授, 博士, 主要研究方向为盲信号处理、雷达目标成像
    张鑫钰(1999—), 男, 硕士研究生, 主要研究方向为通信信号盲源分离
    刘乃安(1966—), 男, 教授, 博士, 主要研究方向为无线通信

Single-channel blind source separation algorithm for co-frequency and co-modulation based on multi-scale fusion neural network

Weihong FU, Xinyu ZHANG, Naian LIU   

  1. School of Telecommunications Engineering, Xidian University, Xi'an 710071, China
  • Received:2023-12-12 Online:2025-02-25 Published:2025-03-18
  • Contact: Weihong FU

摘要:

针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题, 提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN), 采用编码、分离、解码结构实现单通道盲源分离。首先, 编码模块提取出混合通信信号的编码特征; 然后, 分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息, 再利用1×1卷积块捕获信号的局部和全局信息, 估计出每个源信号的掩码; 最后, 解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明, 所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号, 而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量, 同时网络也具有较强的泛化能力, 可以高效面对复杂通信环境的挑战。

关键词: 单通道盲源分离, 深度学习, 同频同调制信号分离, 多尺度融合递归卷积神经网络, 通信信号处理

Abstract:

To address the issues of high computational complexity and poor separation performance in separating co-frequency and co-modulation mixed signals under single-channel conditions, a multi-scale fusion recursive convolutional neural network (RCNN) based on time-domain convolution is proposed. The proposed architecture adopts an encoding-separation-decoding structure to achieve single-channel blind source separation. Specifically, the encoding module extracts the encoding feature of the mixed communication signal. Then, the separation module employs convolutional blocks of varying scale sizes to further extract feature information from the signal. Subsequently, it utilizes 1×1 convolutional blocks to capture both local and global information of the signal, estimating masks for each source signal. Finally, the decoding module uses these masks along with the encoding features of the mixed signal to reconstruct the waveforms of the source signals. Simulation results demonstrate that the proposed multi-scale fusion RCNN not only achieves separation of mixed communication signals with only minor parameter differences, but also reduces the number of parameters and computational complexity by approximately 62% and 41% respectively, compared to the U-Net. Moreover, the network exhibits strong generalization ability and can effectively handle the challenges posed by complex communication environments.

Key words: single channel blind source separation, deep learning, co-frequency and co-modulation signals separation, multi-scale fusion recursive convolutional neural network (RCNN), communication signal processing

中图分类号: