1 |
张培昌, 顾松山, 王振会, 等. 气象万千探本索源——南京信息工程大学"大气探测学科"发展历程回顾与展望[J]. 大气科学学报, 2021, 44 (2): 165- 177.
|
|
ZHANG P C , GU S S , WANG Z H , et al. Review and prospect of atmospheric sounding in Nanjing university of information science and technology[J]. Transactions of Atmospheric Sciences, 2021, 44 (2): 165- 177.
|
2 |
BINETTI M S , CAMPANALE C , MASSARELLI C , et al. The use of weather radar data: possibilities, challenges and advanced applications[J]. Earth, 2022, 3 (1): 157- 171.
doi: 10.3390/earth3010012
|
3 |
ZHAO C H , ZHANG Y J , ZHENG D , et al. An improved hydrometeor identification method for X-band dual-polarization radar and its application for one summer Hailstorm over Northern China[J]. Atmospheric Research, 2020, 245 (1): 105075.
|
4 |
ZHANG Q , ZHANG P , ZHANG Y , et al. Development of dual-polarization weather radar products display platform[J]. Journal of Physics: Conference Series, 2021, 1812 (1): 012016.
doi: 10.1088/1742-6596/1812/1/012016
|
5 |
宋文婷, 李昀英, 黄浩, 等. 基于S波段双偏振雷达资料的降水粒子类型识别算法及应用[J]. 大气科学学报, 2021, 44 (2): 209- 218.
|
|
SONG W T , LI Y Y , HUANG H , et al. Precipitation particle type recognition algorithm based on S-band dual polarization radar data and its application[J]. Transactions of Atmospheric Sciences, 2021, 44 (2): 209- 218.
|
6 |
李海, 任嘉伟, 尚金雷. 一种基于模糊神经网络-模糊C均值聚类的双偏振气象雷达降水粒子分类方法[J]. 电子与信息学报, 2019, 41 (4): 809- 815.
|
|
LI H , REN J W , SHANG J L . Hydrometeor classification method in dual-polarization weather radar based on fuzzy neural network-fuzzy C-means[J]. Journal of Electronics & Information Technology, 2019, 41 (4): 809- 815.
|
7 |
SOLOL Z , SZTURE J , ORELLANA-ALVER J , et al. The role of weather radar in rainfall estimation and its application in meteo-rological and hydrological modelling-a review[J]. Remote Sensing, 2021, 13 (3): 351.
doi: 10.3390/rs13030351
|
8 |
MANIRAGUHA F, VODACEK A, NDASHIMYE E, et al. Ground clutter mitigation and insect signature detection for polarimetric C-band Doppler weather radar[C]//Proc. of the IEEE Global Humanitarian Technology Conference, 2021: 289-296.
|
9 |
WANG Y , WU D , YU Q H , et al. A weather signal detection algorithm based on EVD in elevation for airborne weather radar[J]. Digital Signal Processing, 2021, 116, 103118.
doi: 10.1016/j.dsp.2021.103118
|
10 |
WANG Y, WU D, ZHU D Y, et al. Detection of weather signal in ground clutter for airborne weather radar based on spatial processing in elevation[C]//Proc. of the IEEE 5th International Conference on Signal and Image Processing, 2020: 655-659.
|
11 |
SASIDHARAN S , ANANDAN V K , MISHRA S , et al. Identification, characterization and removal of anomalous propagation and ground clutter echoes using polarimetric Doppler weather radar products[J]. Journal of Electromagnetic Waves and Applications, 2023, 37 (2): 176- 189.
doi: 10.1080/09205071.2022.2118085
|
12 |
STRAKA J M. Hydrometeor fields in a supercell storm as deduced from dual-polarization radar[C]//Proc. of the 18th Conference on Severe Local Storms, 1996: 551-554.
|
13 |
GOLBON-HAGHIGHI M H , ZHANG G . Detection of ground clutter for dual-polarization weather radar using a novel 3D discriminant function[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36 (7): 1285- 1296.
doi: 10.1175/JTECH-D-18-0147.1
|
14 |
MA J L , HU Z Q , YANG M L , et al. Improvement of X-band polarization radar melting layer recognition by the Bayesian method and ITS impact on hydrometeor classification[J]. Advances in Atmospheric Sciences, 2020, 37 (1): 105- 116.
doi: 10.1007/s00376-019-9007-z
|
15 |
JATAU P , MELNIKOV V , YU T Y . A machine learning approach for classifying bird and insect radar echoes with S-band polarimetric weather radar[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38 (10): 1797- 1812.
|
16 |
MAKINEN T , RITVANEN J , PULKKINEN S , et al. Bayesian classification of nonmeteorological targets in polarimetric Doppler radar measurements[J]. Journal of Atmospheric and Oceanic Technology, 2022, 39 (10): 1561- 1578.
doi: 10.1175/JTECH-D-21-0177.1
|
17 |
欧阳彤, 汪玲, 朱岱寅, 等. 基于LightGBM的气象目标分类技术[J]. 雷达科学与技术, 2023, 21 (6): 621- 629.
doi: 10.3969/j.issn.1672-2337.2023.06.005
|
|
OUYANG T , WANG L , ZHU D Y , et al. Meteorological target classification technology based on LightGBM[J]. Radar Science and Technology, 2023, 21 (6): 621- 629.
doi: 10.3969/j.issn.1672-2337.2023.06.005
|
18 |
LU Y P, KUMAR J. Convolutional neural networks for hydrometeor classification using dual polarization Doppler radars[C]// Proc. of the International Conference on Data Mining Workshops, 2019: 288-295.
|
19 |
YU Q H, WU D, ZHU D Y, et al. CNN-based weather signal detection algorithm for airborne weather radar[C]//Proc. of the IEEE 5th International Conference on Signal and Image Processing, 2020: 660-664.
|
20 |
高涌荇, 王旭东, 汪玲, 等. 基于RCNN的双极化气象雷达天气信号检测[J]. 系统工程与电子技术, 2022, 44 (11): 3380- 3387.
doi: 10.12305/j.issn.1001-506X.2022.11.12
|
|
GAO Y X , WANG X D , WANG L , et al. Weather signal detection for dual polarization weather radar based on RCNN[J]. Systems Engineering and Electronics, 2022, 44 (11): 3380- 3387.
doi: 10.12305/j.issn.1001-506X.2022.11.12
|
21 |
XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
|
22 |
KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proc. of the Advances in Neural Information Processing Systems, 2017: 3149-3157.
|
23 |
盖荣丽, 蔡建荣, 王诗宇, 等. 卷积神经网络在图像识别中的应用研究综述[J]. 小型微型计算机系统, 2021, 42 (9): 1980- 1984.
doi: 10.3969/j.issn.1000-1220.2021.09.030
|
|
GAI R L , CAI J R , WANG S Y , et al. Research review on image recognition based on deep learning[J]. Journal of Chinese Computer Systems, 2021, 42 (9): 1980- 1984.
doi: 10.3969/j.issn.1000-1220.2021.09.030
|
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
25 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-08-12]. https://arxiv.org/pdf/1409. 1556.
|
26 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
27 |
LOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015: 448-456.
|
28 |
ABIEN F A. Deep learning using rectified linear units (ReLU)[EB/OL]. [2023-08-12]. https://arxiv.org/pdf/1803. 08375.
|
29 |
FRIEDMAN J H . Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29 (5): 1189- 1232.
doi: 10.1214/aos/1013203450
|
30 |
PASZKE A, GROSS S, MASSAA F, et al. Pytorch: an imperative style, high performance deep learning library[C]//Proc. of the 33rd Conference on Neural Information Processing Systems, 2019: 8026-8037.
|
31 |
LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791
|