系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (12): 4034-4043.doi: 10.12305/j.issn.1001-506X.2024.12.12

• 传感器与信号处理 • 上一篇    

融合LightGBM的ResNeXt气象目标细粒度识别方法

欧阳彤, 汪玲, 朱岱寅, 李勇   

  1. 南京航空航天大学电子信息工程学院, 江苏 南京 211106
  • 收稿日期:2023-09-12 出版日期:2024-11-25 发布日期:2024-12-30
  • 通讯作者: 汪玲
  • 作者简介:欧阳彤(1997—), 女, 硕士研究生, 主要研究方向为气象雷达目标识别
    汪玲(1977—), 女, 教授, 博士, 主要研究方向为雷达信号处理
    朱岱寅(1974—), 男, 教授, 博士, 主要研究方向为合成孔径雷达/逆合成孔径雷达成像、自聚焦算法、干涉合成孔径雷达成像、合成孔径雷达地面动目标指示、机载雷达动目标指示
    李勇(1977—), 男, 副教授, 博士, 主要研究方向为雷达信号处理、雷达系统
  • 基金资助:
    工信部民机专项(MJ-2018-S-28)

Fine-grained recognition method for meteorological targets in ResNeXt fused with LightGBM

Tong OUYANG, Ling WANG, Daiyin ZHU, Yong LI   

  1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2023-09-12 Online:2024-11-25 Published:2024-12-30
  • Contact: Ling WANG

摘要:

为精确识别气象目标与混杂其中的非气象目标,提出一种融合轻量级梯度提升机(light gradient boosting machine,LightGBM)与残差网络的残差网络(residual network of residual network: next generation, ResNeXt) 的气象目标识别方法。首先,制作块状样本数据集,以此数据集为驱动,建立以ResNeXt为基础的气象目标识别网络模型,实现以块状数据样本为识别单位的气象目标粗粒度识别,识别精度可达99.6%以上;然后,再将此粗粒度结果与参考数据的差异值纳入LightGBM分类器,得到以雷达采样单元为识别单位的细粒度识别结果。结合实际观测数据,证明所提方法融合了LightGBM细粒度识别与ResNeXt高精度识别的能力,能够完成气象目标与杂波的判别,判别结果与参考结果高度一致。结合实际观测数据,证明所提方法融合了LightGBM细粒度识别与ResNeXt高精度识别的能力,能够完成气象目标与杂波的判别,判别结果与参考结果高度一致。

关键词: 气象雷达, 气象目标识别, 残差网络, 轻量级梯度提升机, 融合, 深度学习

Abstract:

In order to accurately identify meteorological targets and non-meteorological targets mixed in the meteorological targets, a meteorological target recognition method that combines light gradient boosting machine (LightGBM) and residual network of residual network: next generation(ResNeXt) network is proposed. Firstly, a block sample dataset is produced, and this dataset is used as a driver to establish a meteorological target recognition network model based on the ResNeXt. This model realizes a coarse-grained recognition of meteorological targets with block data samples as the recognition unit with the recognition accuracy of more than 99.6%. Then, the difference between the coarse-grained recognition results and the reference data is included in the LightGBM classifier so the fine-grained recognition results with the radar sampling unit as recognition unit are obtained. Combined with the actual observation data, it is proved that the proposed method combines the ability of fine-grained recognition of LightGBM with the ability of high-precision recognition of ResNeXt, which can distinguish meteorological targets from clutter, and the distinguishing results are highly consistent with the reference results.

Key words: eteorological radar, meteorological target recognition, residual network, light gradient boosting machine (LightGBM), fusion, deep learning

中图分类号: