系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (12): 4116-4127.doi: 10.12305/j.issn.1001-506X.2024.12.20

• 系统工程 • 上一篇    

基于知识图谱的空管特情处置决策支持方法

彭珂, 王华伟, 侯召国, 曾啸寒, 罗通   

  1. 南京航空航天大学民航学院, 江苏 南京 211106
  • 收稿日期:2023-07-13 出版日期:2024-11-25 发布日期:2024-12-30
  • 通讯作者: 王华伟
  • 作者简介:彭珂(1999—), 女, 硕士研究生, 主要研究方向为民航安全工程、知识图谱在民航空管特情处置中的应用
    王华伟(1974—), 女, 教授, 博士研究生导师, 博士, 主要研究方向为民航安全工程、民航维修工程、可靠性工程
    侯召国(1996—), 男, 博士研究生, 主要研究方向为故障诊断、航空器健康管理
    曾啸寒(1999—), 男, 硕士研究生, 主要研究方向为机场道面损伤识别检测
    罗通(1997—), 男, 硕士研究生, 主要研究方向为民航安全工程
  • 基金资助:
    国家自然科学基金(72271123)

Decision support method of ATC special situation disposal based on knowledge graph

Ke PENG, Huawei WANG, Zhaoguo HOU, Xiaohan ZENG, Tong LUO   

  1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2023-07-13 Online:2024-11-25 Published:2024-12-30
  • Contact: Huawei WANG

摘要:

空中交通管制特情是民航运输过程中遭遇的紧急特殊情况, 对其的处置原则是尽可能的精准和高效。若未能有效处置, 将引发重大飞行事故。然而, 传统的特情处置依赖于人工, 难以满足精准和高效的要求。利用知识图谱技术对空中交通管制特情信息进行知识抽取、表示和管理, 并用于辅助空中交通管制人员, 方便其进行特情处置, 可有效提升空中交通管制特情应急处置效率。因此, 提出一种自顶向下的空中交通管制特情处置知识图谱构建方法。首先, 自顶向下定义知识图谱的概念、关系及其知识架构, 形成模式层。接着, 考虑到空中交通管制特情案例记录文本训练量较小且领域性实体较多的特点, 采用融合双向长短时记忆(bi-directional long short-term memory, BiLSTM)网络深度学习模型和规则知识的实体抽取模型双向转换编码器(bi-directional encoder representations from transformers, BERT)-BiLSTM-条件随机场(conditional radom fields, CRF)+正则表达式(regular expression, RE)抽取实体。在此基础上, 利用BiLSTM+自注意力(self-attention, SA)模型对实体间关系进行抽取。之后, 采用Jaccard相关系数进行知识融合。最后, 利用Neo4j图数据库对构建的空中交通管制特情处置知识图谱进行可视化, 并对其在民航空中交通管制特情处置决策支持中的应用前景进行分析, 为空中交通管制部门的实际应用提供参考。

关键词: 知识图谱, 特情处置, 空中交通管制, 深度学习, 决策支持

Abstract:

Air traffic control (ATC) special situation is a special emergency situation encountered in the process of civil aviation transportation, and the principle of ATC disposal is as accurate and efficient as possible. If it is not disposed effectively, it will lead to major flight accidents. However, the traditional special situation disposal relies on manual labor, which is difficult to meet the requirements of precision and efficiency. Knowledge graph technology is used to extract, represent and manage ATC special situation information, and to assist ATC personnel in special situation disposal, which can effectively improve the emergency disposal efficiency of ATC special situation. Therefore, a top-down knowledge graph construction method for ATC special situation disposal is proposed. Firstly, the concept, relationship and knowledge structure of knowledge graph are defined from top to bottom to form a pattern layer. Then, considering the small amount of training in ATC special situation case records and the large number of domain entities, the entity extraction model which combined bi-directional long short-term memory (BiLSTM) network deep learning model and rule knowledge entity extraction model of bi-directional encoder representations from transformers (BERT)-BiLSTM-conditional radom fields (CRF)+regular expression (RE) is adopted to extract entities. On this basis, the BiLSTM+self-attention (SA) model is used to extract the relationships among entities. After that, the Jaccard correlation coefficient is used for knowledge fusion. Finally, the knowledge graph of the constructed ATC special situation disposal is visualized by using Neo4j graph database, and its application prospect in decision support of ATC special situation disposal in civil aviation is analyzed, providing references for the practical application of ATC department.

Key words: knowledge graph, special situation disposal, air traffic control (ATC), deep learning, decision support

中图分类号: