1 |
HENRIQUES R , FEITEIRA I . Predictive modelling: flight delays and associated factors, Hartsfield-Jackson Atlanta International Airport[J]. Procedia Computer Science, 2018, 138, 638- 645.
doi: 10.1016/j.procs.2018.10.085
|
2 |
BASPINAR B , KOYUNCU E . A data-driven air transportation delay propagation model using epidemic process models[J]. International Journal of Aerospace Engineering, 2016, 2016 (1): 4836260.
|
3 |
王春政, 胡明华, 杨磊, 等. 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021, 42 (7): 452- 465.
|
|
WANG C Z , HU M H , YANG L , et al. Airport network delay prediction based on Agent model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (7): 452- 465.
|
4 |
罗赟骞, 陈志杰, 汤锦辉, 等. 采用支持向量机回归的航班延误预测研究[J]. 交通运输系统工程与信息, 2015, 15 (1): 143- 149.
|
|
LUO Y Q , CHEN Z J , TANG J H , et al. Flight delay prediction using support vector machine regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15 (1): 143- 149.
|
5 |
LI Q , JING R Z . Characterization of delay pro-pagation in the air traffic network[J]. Journal of Air Transport Management, 2021, 94, 102075.
doi: 10.1016/j.jairtraman.2021.102075
|
6 |
程华, 李艳梅, 罗谦, 等. 基于C4.5决策树方法的到港航班延误预测问题研究[J]. 系统工程理论与实践, 2014, 34 (S1): 239- 247.
|
|
CHENG H , LI Y M , LUO Q , et al. Study on flight delay with C4.5 decision tree based prediction method[J]. Systems Engineering Theory and Practice, 2014, 34 (S1): 239- 247.
|
7 |
KIM Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]//Proc. of the 35th Digital Avionics Systems Conference, 2016.
|
8 |
YU B , GUO Z , ASIAN S , et al. Flight delay prediction for commercial air transport: a deep learning approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 125 (5): 203- 221.
|
9 |
CAI K Q , LI Y , FANG Y P , et al. A deep learning approach for flight delay prediction through time-evolving graphs[J]. IEEE Trans.on Intelligent Transportation Systems, 2021, 23 (8): 11397- 11407.
|
10 |
姜雨, 陈名扬, 袁琪, 等. 基于时空图卷积神经网络的离港航班延误预测[J]. 北京航空航天大学学报, 2023, 49 (5): 1044- 1052.
|
|
JIANG Y , CHEN M Y , YUAN Q , et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (5): 1044- 1052.
|
11 |
ZENG W L , LI J , QUAN Z B , et al. A deep graph-embedded LSTM neural network approach for airport delay prediction[J]. Journal of Advanced Transportation, 2021, 2021 (1): 6638130.
|
12 |
CAI K Q , LI Y , ZHU Y W , et al. A geographical and operational deep graph convolutional approach for flight delay prediction[J]. Chinese Journal of Aeronautics, 2023, 36 (3): 357- 367.
|
13 |
TAN R K, BORA S. Parameter tuning in modeling and simulations by using swarm intelligence optimization algorithms[C]//Proc. of the International Conference on Computational Intelligence and Communication Network, 2018: 148-152.
|
14 |
龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48 (10): 1970- 1978.
|
|
LONG Y , DENG X L , YANG X X , et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): 1970- 1978.
|
15 |
杨帆, 申亚, 李东东, 等. 基于GA-GNNM的极地光伏发电功率预测方法[J]. 太阳能学报, 2022, 43 (4): 167- 174.
|
|
YANG F , SHEN Y , LI D D , et al. Polar photovoltaic power forecasting method based on GA-GNNM[J]. Acta Energiae Solaris Sinica, 2022, 43 (4): 167- 174.
|
16 |
陈超逸, 鲁娟, 陈楷, 等. 车削表面粗糙度解析模型与DDQN-SVR预测模型研究[J]. 机械工程学报, 2021, 57 (13): 262- 272.
|
|
CHEN C Y , LU J , CHEN K , et al. Research on analytical model and DDQN-SVR prediction model of turning surface roughness[J]. Journal of Mechanical Engineering, 2021, 57 (13): 262- 272.
|
17 |
陈海鹏, 李赫, 阚天洋, 等. 考虑风电时序特性的深度小波-时序卷积网络的超短期风功率预测[J]. 电网技术, 2023, 47 (4): 1653- 1665.
|
|
CHEN H P , LI H , KAN T Y , et al. Ultra-short-term wind power prediction of deep wavelet-timing convolutional network considering wind power timing characteristics[J]. Power System Technology, 2023, 47 (4): 1653- 1665.
|
18 |
SHI Y , HUI L . Wind power prediction based on outlier correction, ensemble reinforcement learning, and residual correction[J]. Energy, 2022, 250, 123857.
|
19 |
YU C Q , YAN G X , YU C M , et al. A multi-factor driven spatio temporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks[J]. Energy, 2023, 263, 126034.
|
20 |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. [2023-11-05]. https://doi.org/10.48550/arXiv.1312.6203.
|
21 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proc. of the Advances in Neural Information Processing Systems, 2016.
|
22 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-11-05]. https://doi.org/10.48550/arXiv.1609.02907.
|
23 |
ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//Proc. of the Conference on Neural Information Processing Systems, 2017: 5998-6008.
|
24 |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-11-05]. https://doi.org/10.48550/arXiv.1609.
|
25 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. https://arXivpreprintarxiv:1409.0473, 2014.
|
26 |
SUN G L , AYEPAHMENSAH D , XU R , et al. End-to-end CNN-based dueling deep Q-Network for autonomous cell activation in Cloud-RANs[J]. Journal of Network and Computer Applications, 2020, 169, 102757.
|
27 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL]. [2023-11-05]. https://people.engr.tamu.edu/guni/ccsce642/files/clqn.pdf.
|
28 |
REBOLLO J J , BALAKRISHNAN H . Characterization and prediction of air traffic delays[J]. Transportation Research Part C: Emerging Technologies, 2014, 44, 231- 241.
|
29 |
XIA Y, CHEN J G. Traffic flow forecasting method based on gradient boosting decision tree[C]//Proc. of the 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology, 2017: 436-439.
|