| 1 | 张远龙, 谢愈.  滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41 (1): 023377. | 
																													
																						|  | ZHANG Y L ,  XIE Y .  Review of trajectory planning and gui-dance methods for gliding vehicles[J]. Acta Aeronautica et Astro- nautica Sinica, 2020, 41 (1): 023377. | 
																													
																						| 2 | ZHAO S ,  ZHU J W ,  BAO W M , et al.  High-dynamic intelligent maneuvering guidance strategy via deep reinforcement learning[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237 (11): 154- 165. | 
																													
																						| 3 | LEAVITTE J A ,  MEASE K D .  Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control and Dynamics, 2007, 30 (2): 473- 481. doi: 10.2514/1.23034
 | 
																													
																						| 4 | XUE S B ,  LU P .  Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (4): 1273- 1281. doi: 10.2514/1.49557
 | 
																													
																						| 5 | 郭冬子, 黄荣, 许河川, 等.  再入飞行器深度确定性策略梯度制导方法研究[J]. 系统工程与电子技术, 2022, 44 (6): 1942- 1949. doi: 10.12305/j.issn.1001-506X.2022.06.21
 | 
																													
																						|  | GUO D Z ,  HUANG R ,  XU H C , et al.  Research on gradient guidance method for depth deterministic strategy of reentry aircraft[J]. Systems Engineering and Electronics, 2022, 44 (6): 1942- 1949. doi: 10.12305/j.issn.1001-506X.2022.06.21
 | 
																													
																						| 6 | LUO X L ,  CHEN C ,  ZENG C N , et al.  Deep reinforcement learning for joint trajectory planning, transmission scheduling, and access control in UAV-assisted wireless sensor networks[J]. Sensors(Basel, Switzerland), 2023, 23 (10): 423- 434. | 
																													
																						| 7 | LEE G T ,  KIM K J ,  JANG J .  Real-time path planning of controllable UAV by subgoals using goal-conditioned reinforcement learning[J]. Applied Soft Computing, 2023, 146, 110660. doi: 10.1016/j.asoc.2023.110660
 | 
																													
																						| 8 | GUO Y F ,  LIU Z P .  UAV path planning based on deep reinforcement learning[J]. International Journal of Advanced Network, Monitoring and Controls, 2023, 8 (3): 81- 88. doi: 10.2478/ijanmc-2023-0068
 | 
																													
																						| 9 | LI H T ,  LV X ,  ZHANG S .  Multi-objective deep reinforcement learning based joint beamforming and power allocation in UAV assisted cellular communication[J]. Wireless Personal Communications, 2024, 134 (2): 809- 829. doi: 10.1007/s11277-024-10927-5
 | 
																													
																						| 10 | YANG L B ,  CAI Y Q ,  WEI H .  Unmanned aerial vehicle-assisted wideband cognitive radio network based on DDQN-SAC[J]. EURASIP Journal on Advances in Signal Processing, 2024, 2024, 43. doi: 10.1186/s13634-024-01141-3
 | 
																													
																						| 11 | LI J ,  CAO S ,  LIU X J , et al.  Trans-UTPA: PSO and MADDPG based multi-UAVs trajectory planning algorithm for emergency communication[J]. Frontiers in Neurorobotics, 2023, 16 (1): 432- 440. | 
																													
																						| 12 | XUE J J ,  ZHU J ,  DU J T , et al.  Dynamic path planning for multiple UAVs with incomplete information[J]. Electronics, 2023, 12 (4): 123- 132. | 
																													
																						| 13 | ZHAO Z X ,  CHEN J ,  XIN B , et al.  Learning scalable task assignment with imperative-priori conflict resolution in multi-UAV adversarial swarm defense problem[J]. Journal of Systems Science and Complexity, 2024, 37 (1): 369- 388. doi: 10.1007/s11424-024-4029-8
 | 
																													
																						| 14 | ZHU J Y ,  KUANG M C ,  ZHOU W Q , et al.  Mastering air combat game with deep reinforcement learning[J]. Defence Technology, 2024, 34, 295- 312. doi: 10.1016/j.dt.2023.08.019
 | 
																													
																						| 15 | DAS P P ,  WANG P ,  NIU C X .  Reentry trajectory design of a hypersonic vehicle based on reinforcement learning[J]. Journal of Physics: Conference Series, 2023, 2633 (1): 012005. doi: 10.1088/1742-6596/2633/1/012005
 | 
																													
																						| 16 | WU T C ,  WANG H L ,  LIU Y H , et al.  Learning-based interfered fluid avoidance guidance for hypersonic reentry vehicles with multiple constraints[J]. ISA Transactions, 2023, 39 (1): 139- 150. | 
																													
																						| 17 | 惠俊鹏, 汪韧, 郭继峰.  基于强化学习的禁飞区绕飞智能制导技术[J]. 航空学报, 2023, 44 (11): 240- 252. | 
																													
																						|  | HUI J P ,  WANG R ,  GUO J F .  Intelligent guidance technology for no fly zone detour based on reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (11): 240- 252. | 
																													
																						| 18 | 方科, 张庆振, 倪昆, 等.  飞行时间约束下的再入制导律[J]. 哈尔滨工业大学学报, 2019, 51 (10): 90- 97. | 
																													
																						|  | FANG K ,  ZHANG Q Z ,  NI K , et al.  Reentry guidance law under flight time constraints[J]. Journal of Harbin Institute of Technology, 2019, 51 (10): 90- 97. | 
																													
																						| 19 | 张晚晴, 余文斌, 李静琳, 等.  基于纵程解析解的飞行器智能横程机动再入协同制导[J]. 兵工学报, 2021, 42 (7): 1400- 1411. | 
																													
																						|  | ZHANG W Q ,  YU W B ,  LI J L , et al.  Intelligent lateral maneuvering and re-entry coordinated guidance for aircraft based on longitudinal analytical solutions[J]. Acta Armamentarii, 2021, 42 (7): 1400- 1411. | 
																													
																						| 20 | ZHU J W ,  ZHANG H ,  ZHAO S , et al.  Multi-constrained intelligent gliding guidance via optimal control and DQN[J]. SCIENCE CHINA Information Sciences, 2023, 66 (3): 214- 229. | 
																													
																						| 21 | 高嘉时. 升力式再入飞行器轨迹优化与制导方法研究[D]. 武汉: 华中科技大学, 2019. | 
																													
																						|  | GAO J S. Research on trajectory optimization and guidance methods for lift type re-entry vehicles[D]. Wuhan: Huazhong University of Science and Technology, 2019. | 
																													
																						| 22 | CHENG Y, SHUI Z S, XU C, et al. Cross-cycle iterative unmanned aerial vehicle reentry guidance based on reinforcement learning[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2019: 587-592. | 
																													
																						| 23 | 武天才, 王宏伦, 刘一恒, 等.  基于深度强化学习与高度速率反馈的再入制导方法[J]. 无人系统技术, 2022, 5 (4): 1- 13. | 
																													
																						|  | WU T C ,  WANG H L ,  LIU Y H , et al.  Reentry guidance method based on deep reinforcement learning and high rate feedback[J]. Unmanned Systems Technology, 2022, 5 (4): 1- 13. | 
																													
																						| 24 | 汪韧, 惠俊鹏, 俞启东, 等.  基于LSTM模型的飞行器智能制导技术研究[J]. 力学学报, 2021, 53 (7): 2047- 2057. | 
																													
																						|  | WANG R ,  HUI J P ,  YU Q D , et al.  Research on intelligent guidance technology for aircraft based on LSTM model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (7): 2047- 2057. | 
																													
																						| 25 | 彭余萧, 何真, 仇靖雯.  基于LSTM-DDPG算法的四翼变掠角飞行器主动变形决策[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2023.0513
 | 
																													
																						|  | PENG Y X ,  HE Z ,  QIU J W .  Active deformation decision-making of four wing variable sweep angle aircraft based on LSTM-DDPG algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2023.0513
 | 
																													
																						| 26 | XIE Y ,  LIU L H ,  TANG G J , et al.  Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88, 44- 60. | 
																													
																						| 27 | LU P .  Entry guidance: a unified method[J]. Journal of Gui-dance, Control, and Dynamics, 2014, 37 (3): 713- 728. | 
																													
																						| 28 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc. of the Advances in Neural Information Processing Systems, 2012: 1097-1105. | 
																													
																						| 29 | LIANG S Y, SRIKANT R. Why deep neural networks for function approximation?[EB/OL].[2024-02-05]. https://arxiv.org/abs/1610.04161. | 
																													
																						| 30 | SHEN Z J ,  LU P .  Dynamic lateral entry guidance logic[J]. Journal of Guidance, Control, and Dynamics, 2004, 27 (6): 949- 959. |