| 1 | 贾永楠, 田似营, 李擎.  无人机集群研究进展综述[J]. 航空学报, 2020, 41 (S1): 4- 14. | 
																													
																						|  | JIA Y N ,  TIAN S Y ,  LI Q .  Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41 (S1): 4- 14. | 
																													
																						| 2 | AL-HILO A ,  SAMIR M ,  ASSI C , et al.  UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management[J]. IEEE Trans.on Intelligent Transportation Systems, 2020, 22 (8): 5155- 5167. | 
																													
																						| 3 | ERDELJ M ,  NATALIZIO E ,  CHOWDHURY K R , et al.  Help from the sky: leveraging UAVs for disaster management[J]. IEEE Pervasive Computing, 2017, 16 (1): 24- 32. doi: 10.1109/MPRV.2017.11
 | 
																													
																						| 4 | 宗群, 王丹丹, 邵士凯, 等.  多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49 (3): 1- 14. | 
																													
																						|  | ZONG Q ,  WANG D D ,  SHAO S K , et al.  Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 1- 14. | 
																													
																						| 5 | SHAO X L ,  LIU H C ,  ZHANG W D , et al.  Path driven formation-containment control of multiple UAVs: a path-following framework[J]. Aerospace Science and Technology, 2023, 135, 108168. doi: 10.1016/j.ast.2023.108168
 | 
																													
																						| 6 | CHEN L ,  DUAN H B .  Collision-free formation-containment control for a group of UAVs with unknown disturbances[J]. Aerospace Science and Technology, 2022, 126, 107618. doi: 10.1016/j.ast.2022.107618
 | 
																													
																						| 7 | SHAO S K ,  PENG Y ,  HE C L , et al.  Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA Transactions, 2020, 97, 415- 430. doi: 10.1016/j.isatra.2019.08.018
 | 
																													
																						| 8 | WU Y ,  GOU J Z ,  HU X T , et al.  A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology, 2020, 107, 106332. doi: 10.1016/j.ast.2020.106332
 | 
																													
																						| 9 | QU C Z ,  GAI W D ,  ZHONG M Y , et al.  A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning[J]. Applied Soft Computing, 2020, 89, 106099. doi: 10.1016/j.asoc.2020.106099
 | 
																													
																						| 10 | ZHANG Z ,  WU J ,  DAI J Y , et al.  A novel real-time penetration path planning algorithm for stealth UAV in 3D complex dynamic environment[J]. IEEE Access, 2020, 8, 122757- 122771. doi: 10.1109/ACCESS.2020.3007496
 | 
																													
																						| 11 | 吴文海, 郭晓峰, 周思羽.  基于改进约束差分进化算法的动态航迹规划[J]. 控制与决策, 2020, 35 (10): 2381- 2390. | 
																													
																						|  | WU W H ,  GUO X F ,  ZHOU S Y .  Dynamic route planning based on improved constrained differential evolution algorithm[J]. Control and Decision, 2020, 35 (10): 2381- 2390. | 
																													
																						| 12 | YU X B ,  JIANG N J ,  WANG X M , et al.  A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning[J]. Expert Systems with Applications, 2023, 215, 119327. doi: 10.1016/j.eswa.2022.119327
 | 
																													
																						| 13 | XU L ,  CAO X B ,  DU W B , et al.  Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems, 2023, 260, 110164. doi: 10.1016/j.knosys.2022.110164
 | 
																													
																						| 14 | SILVA J A G ,  SANTOS D H ,  NEGREIROS A P F , et al.  High-level path planning for an autonomous sailboat robot using Q-Learning[J]. Sensors, 2020, 20 (6): 1550. doi: 10.3390/s20061550
 | 
																													
																						| 15 | 孙辉辉, 胡春鹤, 张军国.  移动机器人运动规划中的深度强化学习方法[J]. 控制与决策, 2021, 36 (6): 1281- 1292. | 
																													
																						|  | SUN H H ,  HU C H ,  ZHANG J G .  Deep reinforcement learning for motion planning of mobile robots[J]. Control and Decision, 2021, 36 (6): 1281- 1292. | 
																													
																						| 16 | LI X J ,  LIU H ,  LI J Q , et al.  Deep deterministic policy gradient algorithm for crowd-evacuation path planning[J]. Computers & Industrial Engineering, 2021, 161, 107621. | 
																													
																						| 17 | ZHANG S T ,  LI Y B ,  DONG Q .  Autonomous navigation of UAV in multi-obstacle environments based on a deep reinforcement learning approach[J]. Applied Soft Computing, 2022, 115, 108194. doi: 10.1016/j.asoc.2021.108194
 | 
																													
																						| 18 | POLYDOROS A S ,  NALPANTIDIS L .  Survey of model-based reinforcement learning: applications on robotics[J]. Journal of Intelligent & Robotic Systems, 2017, 86 (2): 153- 173. | 
																													
																						| 19 | ZHANG F J ,  LI J ,  LI Z .  A TD3-based multi-agent deep reinforcement learning method in mixed cooperation-competition environment[J]. Neurocomputing, 2020, 411, 206- 215. doi: 10.1016/j.neucom.2020.05.097
 | 
																													
																						| 20 | SUI D ,  XU W P ,  ZHANG K .  Study on the resolution of multi-aircraft flight conflicts based on an IDQN[J]. Chinese Journal of Aeronautics, 2022, 35 (2): 195- 213. | 
																													
																						| 21 | 周治国, 余思雨, 于家宝, 等.  面向无人艇的T-DQN智能避障算法研究[J]. 自动化学报, 2023, 49 (8): 1645- 1655. | 
																													
																						|  | ZHOU Z G ,  YU S Y ,  YU J B , et al.  Research on T-DQN intelligent obstacle avoidance algorithm of unmanned surface vehicle[J]. Acta Automatica Sinica, 2023, 49 (8): 1645- 1655. | 
																													
																						| 22 | YAN C ,  XIANG X J ,  WANG C .  Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2020, 98, 297- 309. | 
																													
																						| 23 | 杨秀霞, 王晨蕾, 张毅, 等.  基于逆向强化学习的无人机路径规划[J]. 电光与控制, 2023, 30 (8): 1- 7. | 
																													
																						|  | YANG X X ,  WANG C L ,  ZHANG Y , et al.  UAV path planning based on reverse reinforcement learning[J]. Electronics Optics & Control, 2023, 30 (8): 1- 7. | 
																													
																						| 24 | QIE H ,  SHI D X ,  SHEN T L , et al.  Joint optimization of multi-UAV target assignment and path planning based on multi-agent reinforcement learning[J]. IEEE Access, 2019, 7, 146264- 146272. | 
																													
																						| 25 | ZHOU C H ,  LI J X ,  SHI Y J , et al.  Research on multi-robot formation control based on MATD3 algorithm[J]. Applied Sciences, 2023, 13 (3): 1874. | 
																													
																						| 26 | WU Y ,  GOU J Z ,  JI H L , et al.  Hierarchical mission replanning for multiple UAV formations performing tasks in dynamic situation[J]. Computer Communications, 2023, 200, 132- 148. | 
																													
																						| 27 | PAN Z H ,  ZHANG C X ,  XIA Y Q , et al.  An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (3): 1129- 1133. | 
																													
																						| 28 | TAHIR A ,  BOLING J M ,  HAGHBAYAN M H , et al.  Comparison of linear and nonlinear methods for distributed control of a hierarchical formation of UAVs[J]. IEEE Access, 2020, 8, 95667- 95680. | 
																													
																						| 29 | 王锦锦, 祁圣君, 钟海, 等.  基于Dubins曲线的一致性编队集结控制[J]. 计算机仿真, 2021, 38 (7): 40- 44. | 
																													
																						|  | WANG J J ,  QI S J ,  ZHONG H , et al.  Consistent formation aggregation control based on dubins curve[J]. Computer Simulation, 2021, 38 (7): 40- 44. | 
																													
																						| 30 | TANG J .  Analysis and improvement of traffic alert and collision avoidance system[J]. IEEE Access, 2017, 5, 21419- 21429. | 
																													
																						| 31 | LIU H ,  PENG F C ,  MODARES H , et al.  Heterogeneous formation control of multiple rotorcrafts with unknown dynamics by reinforcement learning[J]. Information Sciences, 2021, 558, 194- 207. | 
																													
																						| 32 | PAN C ,  PENG Z H ,  LIU L , et al.  Data-driven distributed formation control of under-actuated unmanned surface vehicles with collision avoidance via model-based deep reinforcement learning[J]. Ocean Engineering, 2023, 267, 113166. | 
																													
																						| 33 | ZHANG Y ,  MOU Z Y ,  GAO F F , et al.  UAV-enabled secure communications by multi-agent deep reinforcement learning[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (10): 11599- 11611. | 
																													
																						| 34 | 孙田野, 孙伟, 吴建军.  改进Quatre算法的无人机编队快速集结方法[J]. 系统工程与电子技术, 2022, 44 (9): 2840- 2848. doi: 10.12305/j.issn.1001-506X.2022.09.18
 | 
																													
																						|  | SUN T Y ,  SUN W ,  WU J J .  UAV formation rapid assembly method based on improved Quatre algorithm[J]. Systems Engineering and Electronics, 2022, 44 (9): 2840- 2848. doi: 10.12305/j.issn.1001-506X.2022.09.18
 |