系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (9): 3198-3210.doi: 10.12305/j.issn.1001-506X.2024.09.31
• 通信与网络 • 上一篇
刘鹏涛, 雷菁, 刘伟
收稿日期:
2023-10-26
出版日期:
2024-08-30
发布日期:
2024-09-12
通讯作者:
雷菁
作者简介:
刘鹏涛 (1997—), 男, 博士研究生, 主要研究方向为通信计算资源分配、先进传输技术Pengtao LIU, Jing LEI, Wei LIU
Received:
2023-10-26
Online:
2024-08-30
Published:
2024-09-12
Contact:
Jing LEI
摘要:
无人机(unmanned aerial vehicle, UAV)边缘计算技术将UAV平台与移动边缘计算技术相结合, 充分利用UAV的灵活性和机动性, 为用户设备提供及时有效的计算服务。从UAV边缘计算的网络架构入手, 提出基于网络功能虚拟化和软件定义网络的技术架构。针对UAV边缘计算的关键技术, 总结对比UAV边缘计算中不同的多址接入方案, 并从不同的优化目标出发, 对基于经典非凸优化、博弈论以及人工智能方法的计算卸载策略进行总结和分析。最后, 探讨和展望未来的研究方向。
中图分类号:
刘鹏涛, 雷菁, 刘伟. 无人机边缘计算: 架构、多址接入与计算卸载[J]. 系统工程与电子技术, 2024, 46(9): 3198-3210.
Pengtao LIU, Jing LEI, Wei LIU. Unmanned aerial vehicle-enabled edge computing: architecture, multiple access and computation offloading[J]. Systems Engineering and Electronics, 2024, 46(9): 3198-3210.
表1
UAV-MEC网络中多址接入技术总结对比"
文献 | 年份 | 多址接入 | 研究内容 |
[ | 2019 | TDMA | 提出基于TDMA接入方案的工作排队模型, 允许UAV-MEC系统中不同用户并行传输和执行任务 |
[ | 2021 | TDMA | 从物理层安全的角度研究基于TDMA方案的UAV-MEC系统 |
[ | 2021 | FDMA | 说明在以强视距路径为主、频率选择性小的空对地信道时更适合FDMA接入 |
[ | 2020 | FDMA | 研究UAV与基站协同提供MEC服务, 使用FDMA方案以带宽区分多用户设备传输的任务 |
[ | 2021 | FDMA | 考虑具备时间敏感性任务的设备需求, 研究基于FDMA的多UAV-MEC网络 |
[ | 2020 | OFDMA | 研究OFDMA接入方案下UAV-MEC系统中的延迟感知调度问题 |
[ | 2020 | OFDMA | 讨论OFDMA框架下MEC网络中计算效率加权和最大化问题 |
[ | 2021 | OFDMA | 通过优化用户设备占用OFDMA方案的正交频带、发射功率使得设备与UAV的传输速率最大化 |
[ | 2020 | CDMA | 将CDMA方案引入IEEE 802.11ah标准, 以适应UAV群体通信场景下的多个用户设备多路访问 |
[ | 2021 | CDMA | 设备通过CDMA接入UAV的MEC服务器, 不同的正交码允许多个用户同时有效地共享频谱资源 |
[ | 2020 | SDMA | 建立基于SDMA接入的UAV-MEC网络的联合通信计算优化模型以及实物平台 |
[ | 2018 | NOMA | 证明UAV-MEC网络中NOMA方案节省了更多的UAV能耗, 但会导致额外的复杂度 |
[ | 2018 | NOMA | 研究UAV-MEC系统能量最小化的问题, NOMA方案的能量消耗降低了18.75% |
[ | 2021 | NOMA | 为了支持UAV-MEC网络中众多设备接入, 采用NOMA接入方案, 能耗降低了16.66% |
[ | 2020 | NOMA | 利用NOMA方案, 在8个用户的UAV-MEC网络中, 加权能耗减少了约20% |
[ | 2022 | RSMA | 将RSMA引入UAV-MEC网络, 优化RSMA的卸载决策、分拆比, 系统能耗优于PD-NOMA方案 |
[ | 2019 | NOMA | 将NOMA引入UAV-MEC网络, 联合轨迹和计算卸载优化, 最小化所有用户任务的总延迟 |
[ | 2020 | NOMA | 建模一对PD-NOMA用户组的上传时间和同信道干扰的关系, 确定NOMA用户配对和卸载决策 |
[ | 2022 | SCMA | 验证在MEC网络中SCMA方案比OFDMA接入可以减少数据的上传时间, 降低任务计算时延 |
[ | 2021 | NOMA | 研究基于NOMA接入方案的UAV-MEC系统, 最大化所有物联网设备的计算率问题 |
[ | 2020 | RSMA | 优化RSMA的预编码、分拆速率, 最大化用户加权和数据速率 |
[ | 2023 | RSMA | 求出成功计算概率的封闭表达式, 相比OMA与NOMA方案, RSMA能够提高成功计算概率 |
表2
UAV-MEC网络中计算卸载策略求解方法总结对比"
文献 | 场景 | 优化目标 | 方法分类 | 计算卸载策略求解方法 |
[ | 单无人机 | 降低时延 | 非凸优化 | 在引入辅助变量的基础上, 提出一种改进的基于惩罚对偶分解的算法 |
[ | 单无人机 | 降低时延 | 非凸优化 | 采用ADMM、Dinkelbach算法和SCA算法得到最优的卸载策略 |
[ | 多无人机 | 降低时延 | 非凸优化 | 利用SCA算法解决在无人机能量受限的情况下进行计算卸载决策的问题 |
[ | 多无人机 | 降低时延 | 非凸优化 | 多无人机协同提供计算服务, 基于BCD和SCA技术最小化任务时延 |
[ | 多无人机 | 降低时延 | 非凸优化 | 多无人机边缘云协同卸载, 利用李雅普诺夫优化方法进行在线任务卸载决策 |
[ | 多无人机 | 降低时延 | 非凸优化 | 将计算任务卸载问题转化为双边匹配问题, 使每架无人机与设备相匹配 |
[ | 多无人机 | 降低时延 | 博弈论 | 提出一种基于Stackelberg博弈方法求解UAV-MEC网络中计算卸载决策问题 |
[ | 多无人机 | 降低时延 | 智能算法 | 提出基于MARL算法的计算卸载策略, 选择合适的无人机, 实现协同任务卸载 |
[ | 单无人机 | 降低能耗 | 非凸优化 | 在通信计算容量资源的限制下, 使用BCD算法交替求解得出最佳的任务分配策略 |
[ | 单无人机 | 降低能耗 | 非凸优化 | 提出一种基于BCD和SCA技术的迭代优化算法最小化UAV-MEC网络能量消耗 |
[ | 单无人机 | 降低能耗 | 非凸优化 | 利用李雅普诺夫优化法和交替迭代优化法, 分析任务队列、求解出计算卸载策略 |
[ | 多无人机 | 降低能耗 | 博弈论 | 针对分层卸载特征, 构建离散的多领导者多跟随者的能量最小化Stackelberg博弈 |
[ | 多无人机 | 降低能耗 | 智能算法 | 利用DRL网络进行任务卸载决策并通过DNN网络进行计算任务预测 |
[ | 单无人机 | 降低能耗 | 智能算法 | 利用LSTM网络进行计算任务预测, 提出了能耗最优的3层计算卸载算法 |
[ | 多无人机 | 降低能耗 | 智能算法 | 提出基于博弈理论和DRL算法框架用于多无人机与地面基站协同的计算卸载 |
[ | 单无人机 | 权衡时延和能耗 | 非凸优化 | 利用拉格朗日对偶法和SCA算法获得近似最优解、求解计算卸载策略 |
[ | 单无人机 | 权衡时延和能耗 | 非凸优化 | 通过交替优化算法求解平衡无人机能量和任务完成时间的帕累托最优解 |
[ | 单无人机 | 权衡时延和能耗 | 博弈论 | 提出一个基于博弈论的方案来寻找最优计算卸载策略并证明纳什均衡的存在性 |
[ | 单无人机 | 权衡时延和能耗 | 智能算法 | 将优化问题表述为半马尔可夫过程, 使用动态规划和DRL算法求解最优卸载决策 |
[ | 单无人机 | 权衡时延和能耗 | 智能算法 | 提出基于DQN网络调整计算卸载比例的计算卸载策略 |
[ | 多无人机 | 权衡时延和能耗 | 智能算法 | 提出基于DDPG网络的计算卸载策略, 并通过公平性指数检查各无人机的状态 |
[ | 多无人机 | 权衡时延和能耗 | 智能算法 | 研究多无人机的协同MEC系统, 提出一种协作式MARL框架求解任务卸载策略 |
[ | 多无人机 | 权衡时延和能耗 | 智能算法 | 利用MADDPG框架, 优化多无人机的协同卸载决策, 降低时延与设备能量消耗 |
1 |
LI A , DAI L B , YU L S . Resource allocation for multi-UAV-assisted mobile edge computing to minimize weighted energy consumption[J]. IET Communications, 2022, 16 (17): 2070- 2081.
doi: 10.1049/cmu2.12460 |
2 |
MAO Y Y , YOU C S , ZHANG J , et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys and Tutorials, 2017, 19 (4): 2322- 2358.
doi: 10.1109/COMST.2017.2745201 |
3 |
李安, 戴龙斌, 余礼苏, 等. 加权能耗最小化的无人机辅助移动边缘计算资源分配策略[J]. 电子与信息学报, 2022, 44 (11): 3858- 3865.
doi: 10.11999/JEIT210832 |
LI A , DAI L B , YU L S , et al. Resource allocation for unmanned aerial vehicle-assisted mobile edge computing to minimize weighted energy consumption[J]. Journal of Electronics & Information Technology, 2022, 44 (11): 3858- 3865.
doi: 10.11999/JEIT210832 |
|
4 | 卞颖颖. 5G通信技术促进军用无人机发展[J]. 军事文摘, 2019, (7): 20- 23. |
BIAN Y Y . 5G communication technology boosts the development of military drones[J]. Military Digest, 2019, (7): 20- 23. | |
5 | 余雪勇, 朱烨, 邱礼翔, 等. 基于无人机辅助边缘计算系统的节能卸载策略[J]. 系统工程与电子技术, 2022, 44 (3): 1022- 1029. |
YU X Y , ZHU Y , QIU L X , et al. Energy efficient offloading strategy for UAV aided edgecomputing systems[J]. Systems Engineering and Electronics, 2022, 44 (3): 1022- 1029. | |
6 |
JAAFAR W , NASER S , MUHAIDAT S , et al. Multiple access in aerial networks: from orthogonal and non-orthogonal to rate-splitting[J]. IEEE Open Journal of Vehicular Technology, 2020, 1, 372- 392.
doi: 10.1109/OJVT.2020.3032844 |
7 | NEW W K , LEOW C Y , NAVAIE K , et al. Application of NOMA for cellular-connected UAVs: opportunities and challenges[J]. SCIENCE CHINA Information Sciences, 2021, 64 (4): 22- 35. |
8 | 李子姝, 谢人超, 孙礼, 等. 移动边缘计算综述[J]. 电信科学, 2018, 34 (1): 87- 101. |
LI Z S , XIE R C , SUN L , et al. A survey of mobile edge computing[J]. Telecommunication Science, 2018, 34 (1): 87- 101. | |
9 |
张依琳, 梁玉珠, 尹沐君, 等. 移动边缘计算中计算卸载方案研究综述[J]. 计算机学报, 2021, 44 (12): 2406- 2430.
doi: 10.11897/SP.J.1016.2021.02406 |
ZHANG Y L , LIANG Y Z , YIN M J , et al. Survey on the methods of computation offloading in mobile edge computing[J]. Chinese Journal of Computers, 2021, 44 (12): 2406- 2430.
doi: 10.11897/SP.J.1016.2021.02406 |
|
10 |
ABRAR M , AJMAL U , ALMOHAIMEED Z M , et al. Energy efficient UAV-enabled mobile edge computing for IoT devices: a review[J]. IEEE Access, 2021, 9, 127779- 127798.
doi: 10.1109/ACCESS.2021.3112104 |
11 |
莫鸿彬, 李猛. 无人机边缘计算网络: 架构, 关键技术与挑战[J]. 广东通信技术, 2021, 41 (4): 54- 59.
doi: 10.3969/j.issn.1006-6403.2021.04.013 |
MO H B , LI M . Edge computing networks for unmanned aerial vehicles: architecture, key technologies and challenges[J]. Guangdong Communications Technology, 2021, 41 (4): 54- 59.
doi: 10.3969/j.issn.1006-6403.2021.04.013 |
|
12 | 邱铭. 基于无人机移动边缘计算的软件定义网络架构分析[J]. 电子世界, 2020, (5): 62- 63. |
QIU M . Architecture analysis of software-defined network for UAV-based mobile edge computing[J]. Journal of Electronic World, 2020, (5): 62- 63. | |
13 |
LIN C , HAN G , SHAH S B H , et al. Integrating mobile edge computing into unmanned aerial vehicle networks: an SDN-enabled architecture[J]. IEEE Internet of Things Magazine, 2021, 4 (4): 18- 23.
doi: 10.1109/IOTM.001.2100070 |
14 |
HUDA S M A , MOH S . Survey on computation offloading in UAV-enabled mobile edge computing[J]. Journal of Network and Computer Applications, 2022, 201, 103341.
doi: 10.1016/j.jnca.2022.103341 |
15 |
LIU Z W , CAO Y , GAO P , et al. Multi-UAV network assisted intelligent edge computing: challenges and opportunities[J]. China Communications, 2022, 19 (3): 258- 278.
doi: 10.23919/JCC.2022.03.019 |
16 | 董超, 沈赟, 屈毓锛. 基于无人机的边缘智能计算研究综述[J]. 智能科学与技术学报, 2020, 2 (3): 227- 239. |
DONG C , SHEN Y , QU Y Z . A survey of edge intelligent computing based on UAV[J]. Journal of Intelligent Science and Technology, 2020, 2 (3): 227- 239. | |
17 | BEKKOUCHE O, BAGAA M, TALEB T. Toward a UTM-based service orchestration for UAVs in MEC-NFV environment[C]//Proc. of the IEEE Global Communications Confe-rence, 2019. |
18 |
MOTLAGH N H , BAGAA M , TALEB T . UAV-based IoT platform: a crowd surveillance use case[J]. IEEE Communications Magazine, 2017, 55 (2): 128- 134.
doi: 10.1109/MCOM.2017.1600587CM |
19 | XU Y J , YANG M , YANG Y , et al. Max-min energy-efficient optimization for cognitive heterogeneous networks with spectrum sensing errors and channel uncertainties[J]. IEEE Wireless Communications Letters, 2021, 11 (6): 1113- 1117. |
20 |
DU Y , YANG K , WANG K Z , et al. Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IoT systems[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (10): 10187- 10200.
doi: 10.1109/TVT.2019.2935877 |
21 |
XU Y , ZHANG T K , YANG D C , et al. Joint resource and trajectory optimization for security in uav-assisted MEC systems[J]. IEEE Trans.on Communications, 2021, 69 (1): 573- 588.
doi: 10.1109/TCOMM.2020.3025910 |
22 |
SUN C , NI W , WANG X . Joint computation offloading and trajectory planning for UAV-assisted edge computing[J]. IEEE Trans.on Wireless Communications, 2021, 20 (8): 5343- 5358.
doi: 10.1109/TWC.2021.3067163 |
23 |
YU Z , GONG Y M , GONG S M , et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7 (4): 3147- 3159.
doi: 10.1109/JIOT.2020.2965898 |
24 |
LI W T , ZHAO M X , WU Y H , et al. Collaborative offloading for UAV-enabled time-sensitive MEC networks[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021, 1.
doi: 10.1186/s13638-020-01861-8 |
25 |
LIU S Y , YANG T T . Delay aware scheduling in UAV-enabled OFDMA mobile edge computing system[J]. IET Communications, 2020, 14 (18): 3203- 3211.
doi: 10.1049/iet-com.2020.0274 |
26 |
WU Y H , WANG Y H , ZHOU F H , et al. Computation efficiency maximization in OFDMA-based mobile edge computing networks[J]. IEEE Communications Letters, 2020, 24 (1): 159- 163.
doi: 10.1109/LCOMM.2019.2950013 |
27 |
XU Y , ZHANG T K , LIU Y W , et al. UAV-assisted MEC networks with aerial and ground cooperation[J]. IEEE Trans.on Wireless Communications, 2021, 20 (12): 7712- 7727.
doi: 10.1109/TWC.2021.3086521 |
28 |
KHAN S , SAAD W , ZEESHAN M , et al. Implementation and analysis of multicode multicarrier code division multiple access (MC-MC CDMA) in IEEE 802. 11ah for UAV swarm communication[J]. Physical Communication, 2020, 42, 101159.
doi: 10.1016/j.phycom.2020.101159 |
29 |
ZHANG K Y , GUI X L , REN D W , et al. Energy-latency tradeoff for computation offloading in UAV-assisted multiaccess edge computing system[J]. IEEE Internet of Things Journal, 2021, 8 (8): 6709- 6719.
doi: 10.1109/JIOT.2020.2999063 |
30 |
ZHANG Q X , CHEN J R , JI L , et al. Response delay optimization in mobile edge computing enabled UAV swarm[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (3): 3280- 3295.
doi: 10.1109/TVT.2020.2964821 |
31 |
XU Y J , HU R Q , LI G Q . Robust energy-efficient maximization for cognitive NOMA networks under channel uncertainties[J]. IEEE Internet of Things Journal, 2020, 7 (9): 8318- 8330.
doi: 10.1109/JIOT.2020.2989464 |
32 | XU Y J , QIN Z J , GUI G , et al. Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[J]. IEEE Wireless Communications Letters, 2020, 10 (2): 353- 357. |
33 |
DIAO X B , ZHENG J C , WU Y , et al. Joint trajectory design, task data, and computing resource allocations for NOMA-based and UAV-assisted mobile edge computing[J]. IEEE Access, 2019, 7, 117448- 117459.
doi: 10.1109/ACCESS.2019.2936437 |
34 |
HUA M , HUANG Y M , WANG Y , et al. Energy optimization for cellular-connected multi-UAV mobile edge computing systems with multi-access schemes[J]. Journal of Communications and Information Networks, 2018, 3 (4): 33- 44.
doi: 10.1007/s41650-018-0035-0 |
35 |
JEONG S , SIMEONE O , KANG J . Mobile edge computing via a UAV-mounted cloudlet: optimization of bit allocation and path planning[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (3): 2049- 2063.
doi: 10.1109/TVT.2017.2706308 |
36 |
BUDHIRAJA I , KUMAR N , TYAGI S , et al. Energy consumption minimization scheme for NOMA-based mobile edge computation networks underlaying UAV[J]. IEEE Systems Journal, 2021, 15 (4): 5724- 5733.
doi: 10.1109/JSYST.2021.3076782 |
37 |
ZHANG X C , ZHANG J , XIONG J , et al. Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA[J]. IEEE Internet of Things Journal, 2020, 7 (6): 5613- 5627.
doi: 10.1109/JIOT.2020.2980035 |
38 |
TRUONG T P , DAO N N , CHO S . HAMEC-RSMA: enhanced aerial computing systems with rate splitting multiple access[J]. IEEE Access, 2022, 10, 52398- 52409.
doi: 10.1109/ACCESS.2022.3173125 |
39 | GUO F X, ZHANG H L, JI H, et al. Joint trajectory and computation offloading optimization for UAV-assisted MEC with NOMA[C]//Proc. of the IEEE Conference on Computer Communications Workshops, 2019. |
40 |
SHENG M , DAI Y P , LIU J Y , et al. Delay-aware computation offloading in NOMA MEC under differentiated uploading delay[J]. IEEE Trans.on Wireless Communications, 2020, 19 (4): 2813- 2826.
doi: 10.1109/TWC.2020.2968426 |
41 |
LIU P T , AN K , LEI J , et al. SCMA-based multiaccess edge computing in IoT systems: an energy-efficiency and latency tradeoff[J]. IEEE Internet of Things Journal, 2022, 9 (7): 4849- 4862.
doi: 10.1109/JIOT.2021.3105658 |
42 | LIU P T, LEI J, LIU W. An optimization scheme for SCMA-based multi-access edge computing[C]//Proc. of the IEEE 93rd Vehicular Technology Conference, 2021. |
43 |
FENG W M , TANG J , ZHAO N , et al. Hybrid beamforming design and resource allocation for UAV-aided wireless-powered mobile edge computing networks with NOMA[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (11): 3271- 3286.
doi: 10.1109/JSAC.2021.3091158 |
44 |
JAAFAR W , NASER S , MUHAIDAT S , et al. On the downlink performance of RSMA-based UAV communications[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (12): 16258- 16263.
doi: 10.1109/TVT.2020.3037657 |
45 |
CHEN P X , LIU H W , YE Y H , et al. Rate-splitting multiple access aided mobile edge computing with randomly deployed users[J]. IEEE Journal on Selected Areas in Communications, 2023, 41 (5): 1549- 1564.
doi: 10.1109/JSAC.2023.3240786 |
46 |
XU Y , GU B , HU R Q , et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (6): 6200- 6205.
doi: 10.1109/TVT.2021.3077094 |
47 |
HU Q Y , CAI Y L , YU G D , et al. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6 (2): 1879- 1892.
doi: 10.1109/JIOT.2018.2878876 |
48 | YU Y, BU X Y, YANG K, et al. UAV-aided low latency mobile edge computing with mmWave backhaul[C]//Proc. of the IEEE International Conference on Communications, 2019. |
49 |
HABER E E , ALAMEDDINE H A , ASSI C , et al. UAV-aided ultra-reliable low-latency computation offloading in future IoT networks[J]. IEEE Trans.on Communications, 2021, 69 (10): 6838- 6851.
doi: 10.1109/TCOMM.2021.3096559 |
50 |
ZHENG G Y , XU C , WEN M W , et al. Service caching based aerial cooperative computing and resource allocation in multi-UAV enabled mec systems[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (10): 10934- 10947.
doi: 10.1109/TVT.2022.3183577 |
51 | BAI Z Y , LIN Y F , CAO Y , et al. Delay-aware cooperative task offloading for multi-UAV enabled edge-cloud computing[J]. IEEE Trans.on Mobile Computing, 2024, 23 (2): 1034- 1049. |
52 | CHEN W W, SU Z, XU Q L, et al. VFC-based cooperative UAV computation task offloading for post-disaster rescue[C]//Proc. of the IEEE Conference on Computer Communications, 2020: 228-236. |
53 | LIU J F, LI L X, YANG F C, et al. Minimization of offloading delay for two-tier UAV with mobile edge computing[C]//Proc. of the 15th International Wireless Communications & Mobile Computing Conference, 2019: 1534-1538. |
54 |
ZHU S C , GUI L , ZHAO D M , et al. Learning-based computation offloading approaches in UAVs-assisted edge computing[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (1): 928- 944.
doi: 10.1109/TVT.2020.3048938 |
55 | ALSENWI M, TUN Y K, RAJ-PANDEY S, et al. UAV-assisted multi-access edge computing system: an energy-efficient resource management framework[C]//Proc. of the International Conference on Information Networking, 2020: 214-219. |
56 |
GUO H Z , LIU J J . UAV-enhanced intelligent offloading for internet of things at the edge[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (4): 2737- 2746.
doi: 10.1109/TII.2019.2954944 |
57 |
ZHANG J , ZHOU L , TANG Q , et al. Stochastic computation offloading and trajectory scheduling for UAV-assisted mobile edge computing[J]. IEEE Internet of Things Journal, 2019, 6 (2): 3688- 3699.
doi: 10.1109/JIOT.2018.2890133 |
58 |
CHEN J X , WU Q H , XU Y H , et al. A multi-leader multi-follower Stackelberg game for coalition-based UAV MEC networks[J]. IEEE Wireless Communications Letters, 2021, 10 (11): 2350- 2354.
doi: 10.1109/LWC.2021.3100113 |
59 |
YANG Z , CHEN M Z , LIU X , et al. AI-driven UAV-NOMA-MEC in next generation wireless networks[J]. IEEE Wireless Communications, 2021, 28 (5): 66- 73.
doi: 10.1109/MWC.121.2100058 |
60 |
WU G X , MIAO Y M , ZHANG Y , et al. Energy efficient for UAV-enabled mobile edge computing networks: intelligent task prediction and offloading[J]. Computer Communications, 2020, 150, 556- 562.
doi: 10.1016/j.comcom.2019.11.037 |
61 |
ASHERALIEVA A , NIYATO D . Hierarchical game-theoretic and reinforcement learning framework for computational offloading in UAV-enabled mobile edge computing networks with multiple service providers[J]. IEEE Internet of Things Journal, 2019, 6 (5): 8753- 8769.
doi: 10.1109/JIOT.2019.2923702 |
62 |
ZHANG T K , XU Y , LOO J , et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (8): 5505- 5516.
doi: 10.1109/TII.2019.2948406 |
63 |
ZHAN C , HU H , SUI X F , et al. Completion time and energy optimization in the UAV-enabled mobile-edge computing system[J]. IEEE Internet of Things Journal, 2020, 7 (8): 7808- 7822.
doi: 10.1109/JIOT.2020.2993260 |
64 |
CALLEGARO D , LEVORATO M . Optimal edge computing for infrastructure-assisted UAV systems[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (2): 1782- 1792.
doi: 10.1109/TVT.2021.3051378 |
65 |
CHEN L M , KUANG X Y , ZHU F S , et al. Intelligent mobile edge computing networks for Internet of Things[J]. IEEE Access, 2021, 9, 95665- 95674.
doi: 10.1109/ACCESS.2021.3093886 |
66 |
SEID A M , BOATENG G O , ANOKYE S , et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks: a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021, 8 (15): 12203- 12218.
doi: 10.1109/JIOT.2021.3063188 |
67 |
ZHAO N , YE Z Y , PEI Y Y , et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Trans.on Wireless Communications, 2022, 21 (9): 6949- 6960.
doi: 10.1109/TWC.2022.3153316 |
68 | YU K J, CUI Q M, ZHANG Z Y, et al. Efficient UAV/satellite-assisted IoT task offloading: a multi-agent reinforcement learning solution[C]//Proc. of the 27th Asia Pacific Conference on Communications, 2022: 83-88. |
[1] | 钟罡, 周蒋颖, 杜森, 张洪海, 刘皞. 基于航迹预测的无人机短时航迹偏离检测方法[J]. 系统工程与电子技术, 2024, 46(8): 2696-2708. |
[2] | 杨颜冰, 雷菁, 赖恪. 基于合并码本的码字位置序号调制SCMA方案[J]. 系统工程与电子技术, 2024, 46(7): 2498-2508. |
[3] | 刘祥林, 杨春刚, 李富强, 欧阳颖, 宋延博. 意图驱动数据链网络策略协商模型与算法[J]. 系统工程与电子技术, 2024, 46(6): 2128-2137. |
[4] | 赵晓琛, 赵东涛, 袁航, 王欢, 张群. 低脉冲重复频率条件下无人机微动参数提取[J]. 系统工程与电子技术, 2024, 46(5): 1503-1513. |
[5] | 陶灿灿, 周锐. 面向空地中继网络优化的无人机运动控制方法[J]. 系统工程与电子技术, 2024, 46(5): 1712-1723. |
[6] | 隋东, 杨振宇, 丁松滨, 周婷婷. 基于EMSDBO算法的无人机三维航迹规划[J]. 系统工程与电子技术, 2024, 46(5): 1756-1766. |
[7] | 余婧, 吴晓军, 蒋安林, 雍恩米. 基于多精度规划窗口的无人机航迹规划方法研究[J]. 系统工程与电子技术, 2024, 46(5): 1767-1776. |
[8] | 毕文豪, 张梦琦, 高飞, 杨咪, 张安. 无人机集群任务分配技术研究综述[J]. 系统工程与电子技术, 2024, 46(3): 922-934. |
[9] | 刘涛, 王沙沙, 张驰, 白光晗, 陶俊勇. 考虑韧性的无人机集群自组织区域覆盖方法[J]. 系统工程与电子技术, 2024, 46(3): 942-952. |
[10] | 高程, 都延丽, 步雨浓, 刘燕斌, 王宇飞. 面向复杂多任务的异构无人机集群分组调配[J]. 系统工程与电子技术, 2024, 46(3): 972-981. |
[11] | 郝文康, 陈琪锋. 无人机编队模糊约束分布式模型预测节能控制[J]. 系统工程与电子技术, 2024, 46(3): 1021-1030. |
[12] | 桂洋, 郑柏超, 高鹏. 基于NESO-LFDC的四旋翼无人机滑模姿态控制[J]. 系统工程与电子技术, 2024, 46(3): 1075-1083. |
[13] | 余雪勇, 傅新程, 朱洪波. 基于混合协作NOMA的安全MEC能耗优化[J]. 系统工程与电子技术, 2024, 46(3): 1116-1124. |
[14] | 裴立冠, 周唯, 刘经东. 基于布谷鸟搜索算法的机动化箔条幕布放方法研究[J]. 系统工程与电子技术, 2024, 46(3): 814-823. |
[15] | 刘世豪, 黄仰超, 胡航, 司江勃, 韩蕙竹, 安琪. 无人机群辅助边缘计算系统的任务卸载和资源分配联合优化[J]. 系统工程与电子技术, 2024, 46(2): 751-760. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||