1 |
GUO F X , YU F , ZHANG H L , et al. Enabling massive IoT toward 6G: a comprehensive survey[J]. IEEE Internet of Things Journal, 2021, 8 (15): 11891- 11915.
doi: 10.1109/JIOT.2021.3063686
|
2 |
NGUYEN D C , DING M , PATHIRANA P N , et al. 6G internet of things: a comprehensive survey[J]. IEEE Internet of Things Journal, 2022, 9 (1): 359- 383.
doi: 10.1109/JIOT.2021.3103320
|
3 |
VAEZI M , AZARI A , KHOSRAVIRAD S R , et al. Cellular, wide-area, and non-terrestrial IoT: a survey on 5G advances and the road toward 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24 (2): 1117- 1174.
|
4 |
RENZO M D , HASS H , GRANT P M . Spatial modulation for multiple-antenna wireless systems: a survey[J]. IEEE Communications Magazine, 2011, 49 (12): 182- 191.
doi: 10.1109/MCOM.2011.6094024
|
5 |
BASAR E , AYGOLU U , PANAYIRCI E , et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Trans. on Signal Processing, 2013, 61 (22): 5536- 5549.
doi: 10.1109/TSP.2013.2279771
|
6 |
LI Q , WEN M W , BASAR E , et al. Index modulated OFDM spread spectrum[J]. IEEE Trans. on Wireless Communications, 2018, 17 (4): 2360- 2374.
doi: 10.1109/TWC.2018.2793238
|
7 |
BUDHIRAJA I , KUMAR N , TYAGI S , et al. A systematic review on NOMA variants for 5G and beyond[J]. IEEE Access, 2021, 9, 85573- 85644.
doi: 10.1109/ACCESS.2021.3081601
|
8 |
YU L S , LIU Z L , WEN M W , et al. Sparse code multiple access for 6G wireless communication networks: recent advances and future directions[J]. IEEE Communications Standards Maga-zine, 2021, 5 (2): 92- 99.
doi: 10.1109/MCOMSTD.001.2000049
|
9 |
LIU Y , YANG L , HANZO L . Spatial modulation aided sparse code division multiple access[J]. IEEE Trans. on Wireless Communications, 2018, 17 (3): 1474- 1487.
doi: 10.1109/TWC.2017.2778722
|
10 |
XIANG L P , LIU Y S , YANG L L , et al. Low complexity detection for spatial modulation aided sparse code division multiple access[J]. IEEE Trans. on Vehicular Technology, 2021, 70 (12): 12858- 12871.
doi: 10.1109/TVT.2021.3121128
|
11 |
CHEN X , WEN M W , DANG S P . On the performance of cooperative OFDM-NOMA system with index modulation[J]. IEEE Wireless Communications Letters, 2020, 9 (9): 1346- 1350.
doi: 10.1109/LWC.2020.2990159
|
12 |
CHEN M, WU J. Subcarrier and permutation index modulation multiple access with rotation code[C]//Proc. of the IEEE 94th Vehicular Technology Conference, 2021.
|
13 |
KUMAR M H , SHARMA S , THOTTAPPAN M , et al. Precoded spatial modulation-aided cooperative NOMA[J]. IEEE Communications Letters, 2021, 25 (6): 2053- 2057.
doi: 10.1109/LCOMM.2021.3066602
|
14 |
PAN Z P , LUO J S , LEI J , et al. Uplink spatial modulation SCMA system[J]. IEEE Communications Letters, 2019, 23 (1): 184- 187.
doi: 10.1109/LCOMM.2018.2882813
|
15 |
Al-NAHHAL I , DOBRE O A , IKKI S . On the complexity reduction of uplink sparse code multiple access for spatial modulation[J]. IEEE Trans. on Communications, 2020, 68 (11): 6962- 6974.
doi: 10.1109/TCOMM.2020.3018184
|
16 |
HU Y Y , PAN Z W , LIU N , et al. Multidimensional constellation design for spatial modulated SCMA systems[J]. IEEE Trans. on Vehicular Technology, 2021, 70 (9): 8795- 8810.
doi: 10.1109/TVT.2021.3093044
|
17 |
AL-NAHHAL I , DOBRE O A , BASAR E , et al. Low-cost uplink sparse code multiple access for spatial modulation[J]. IEEE Trans. on Vehicular Technology, 2019, 68 (9): 9313- 9317.
doi: 10.1109/TVT.2019.2930285
|
18 |
ZUO C, ZHENG J P. Sparse code multiple access with index modulation[C]//Proc. of the IEEE/CIC International Conference on Communications in China, 2020: 1314-1318.
|
19 |
TEKCE F , AYTEN U E , DURAK-ATA L . SCMA system design with index modulation via codebook assignment[J]. IEEE Trans. on Vehicular Technology, 2021, 70 (2): 1699- 1708.
doi: 10.1109/TVT.2021.3055849
|
20 |
LAI K , LEI J , WEN L , et al. Codeword position index based sparse code multiple access system[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 737- 740.
doi: 10.1109/LWC.2018.2890031
|
21 |
LAI K , LEI J , WEN L , et al. Codeword position index modulation design for sparse code multiple access system[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (11): 13273- 13288.
doi: 10.1109/TVT.2020.3022690
|
22 |
FAN W , WEN C . Low complexity iterative receiver design for sparse code multiple access[J]. IEEE Trans. on Communications, 2017, 65 (2): 621- 634.
doi: 10.1109/TCOMM.2016.2631468
|
23 |
ZHANG C C , LUO Y , CHEN Y . A low-complexity SCMA detector based on discretization[J]. IEEE Trans. on Wireless Communications, 2018, 17 (4): 2333- 2345.
doi: 10.1109/TWC.2018.2792425
|
24 |
NIKOPOUR H, YI E, BAYESTEH A, et al. SCMA for downlink multiple access of 5G wireless networks[C]//Proc. of the IEEE Global Communications Conference, 2014: 3940-3945.
|
25 |
CHEN Y M , CHEN J W . On the design of near-optimal sparse code multiple access codebooks[J]. IEEE Trans. on Communications, 2020, 68 (5): 2950- 2962.
doi: 10.1109/TCOMM.2020.2974213
|
26 |
VAMEGHESTAHBANATI M , MARSLAND I , GOHARY R H , et al. Multidimensional constellations for uplink SCMA systems—a comparative study[J]. IEEE Communications Surveys & Tutorials, 2019, 21 (3): 2169- 2194.
|
27 |
雷拓峰, 倪淑燕, 程乃平, 等. 瑞利衰落信道下SCMA码本设计[J]. 通信学报, 2022, 43 (4): 107- 113.
|
|
LEI T F , NI S Y , CHENG N P , et al. SCMA codebooks design for Rayleigh fading channel[J]. Journal on Communications, 2022, 43 (4): 107- 113.
|
28 |
TAHERZADEH M, NIKOPOUR H, BAYESTEH A, et al. SCMA codebook design[C]//Proc. of the IEEE 80th Vehicular Technology Conference, 2014.
|
29 |
BAO J C , MA Z , XIAO M , et al. Bit-interleaved coded SCMA with iterative multiuser detection: multidimensional constellations design[J]. IEEE Trans. on Communications, 2018, 66 (11): 5292- 5304.
doi: 10.1109/TCOMM.2017.2782325
|
30 |
包金晨. 稀疏码多址接入系统性能分析及码本设计[D]. 成都: 西南交通大学, 2017.
|
|
BAO J C. On performance analysis and codebook design for sparse code multiple access systems[D]. Chengdu: Southwest Jiaotong University, 2017.
|