系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 568-579.doi: 10.12305/j.issn.1001-506X.2025.02.23

• 系统工程 • 上一篇    

Dueling DQN优化下的航班延误自适应图卷积循环网络预测方法

刘晓琳1, 郭梦娇1, 李卓2,*   

  1. 1. 中国民航大学电子信息与自动化学院, 天津 300300
    2. 中国农业大学信息与电气工程学院, 北京 100083
  • 收稿日期:2024-01-05 出版日期:2025-02-25 发布日期:2025-03-18
  • 通讯作者: 李卓
  • 作者简介:刘晓琳(1978—), 女, 副教授, 博士, 主要研究方向为智能控制与故障诊断
    郭梦娇(1999—), 女, 硕士研究生, 主要研究方向为航班延误预测
    李卓(1994—), 女, 博士研究生, 主要研究方向为电力系统自动化、新能源发电
  • 基金资助:
    天津市自然科学基金(17JCYBJC18200)

Adaptive graph convolutional recurrent network prediction method for flight delay based on Dueling DQN optimization

Xiaolin LIU1, Mengjiao GUO1, Zhuo LI2,*   

  1. 1. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
    2. School of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
  • Received:2024-01-05 Online:2025-02-25 Published:2025-03-18
  • Contact: Zhuo LI

摘要:

为充分挖掘机场网络航班间的时空动态相关性以减小预测误差, 提出一种基于对偶深度Q网络(dueling deep Q network, Dueling DQN)优化的多组件自适应图卷积循环网络航班延误预测模型。首先, 结合自适应图卷积网络与多头空间注意力机制, 并行捕获并融合多个子空间的延误信息, 充分挖掘非线性空间动态特征。其次, 采用门控循环单元为时间特征提取模块的基础结构, 并引入时间注意力机制以学习历史延误数据间的关注权重。然后, 设置多个时间维输入组件, 增加对不同时间模式构建的多样性。最后,采用Dueling DQN优化多组件自适应图卷积门控循环单元(multi-component adaptive graph convolution-gated recurrent unit,MAGC-GRU)模型的超参数。实验结果表明,所提模型的平均绝对误差相对于历史平均法、随机森林法、梯度增强回归树法、门控循环单元法、时空图卷积网络法, 分别降低了10.6%、6.07%、9.18%、3.79%和3.12%。

关键词: 航班延误预测, 深度学习, 强化学习, 多组件融合, 图卷积

Abstract:

To fully explore the spatio-temporal dynamic correlation between airport network flights to reduce prediction errors, a multi-component adaptive graph convolutional recurrent network flight delay prediction model based on dueling deep Q network (Dueling DQN) optimization is proposed. Firstly, by combining adaptive graph convolutional network (GCN) with multi-head spatial attention mechanisms, parallel capture and fusion of delay information from multiple subspaces is achieved, fully exploiting nonlinear spatial dynamic features. Secondly, grated recurrent unit (GRU) is used as the basis for the time feature extraction module, and time attention mechanism is introduced to learn the attention weights between historical delay data. Then, multiple time dimension input components are set up to increase the diversity of constructing different time patterns. Finally, Dueling DQN is used to optimize the hyperparameters of the multi-componet adaptive graph convolution-GRU (MAGC-GRU) model. The experimental results show that the mean absolute error (MAE) of the proposed model decreased by 10.6%, 6.07%, 9.18%, 3.79%, and 3.12% compared to historical average, random forest, gradient boosting regression tree, GRU, and spatial-temporal GCN, respectively.

Key words: flight delay prediction, deep learning, reinforcement learning, multi-component fusion, graph convolution network (GCN)

中图分类号: