系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 768-778.doi: 10.12305/j.issn.1001-506X.2025.03.09
• 传感器与信号处理 • 上一篇
王奇, 王子瑶, 郑峻峰
收稿日期:
2024-01-24
出版日期:
2025-03-28
发布日期:
2025-04-18
通讯作者:
王奇
作者简介:
王奇(1988—), 男, 副教授, 博士, 主要研究方向为电磁结构优化理论与方法、拓扑优化、天线设计基金资助:
Qi WANG, Ziyao WANG, Junfeng ZHENG
Received:
2024-01-24
Online:
2025-03-28
Published:
2025-04-18
Contact:
Qi WANG
摘要:
噪声和信号传输是雷达设计中需要考虑的重要因素, 本文设计一种考虑多源噪声及信号传输质量的毫米波雷达系统仿真模型。模型包括频率合成器、信号收发机以及信号处理等模块, 能够模拟信号发生、传输至雷达测速、测距的系统。以此为框架, 设计考虑电源噪声、杂散噪声和杂波噪声的噪声模型, 对雷达漏警、虚警等情况进行模拟预测。在信号传输方面, 建立等效电路模型, 并结合场路协同分析方法, 提高仿真精度。对于典型案例, 发现时钟信号存在“回勾”问题, 这表明仿真模型能够通过检测“眼图”、信号波形等指标, 有效预测雷达可能存在的信号传输质量问题, 并指导传输线的设计。
中图分类号:
王奇, 王子瑶, 郑峻峰. 考虑多源噪声及信号传输的雷达系统仿真模型[J]. 系统工程与电子技术, 2025, 47(3): 768-778.
Qi WANG, Ziyao WANG, Junfeng ZHENG. Simulation model for radar system considering multi-source noise and signal transmission[J]. Systems Engineering and Electronics, 2025, 47(3): 768-778.
1 |
ZHAO Y L , WEN L , JING Y Z , et al. Non-LOS target localization via millimeter-wave automotive radar[J]. Journal of Systems Engineering and Electronics, 2023, 34 (5): 1171- 1181.
doi: 10.23919/JSEE.2023.000070 |
2 | LI H C , LIU Y J , LIAO G S , et al. Complementary mismatch filter group design for integrated radar and communications waveforms observed in colored noise[J]. IEEE Wireless Communications Letters, 2024, 12 (2): 227- 235. |
3 |
SCHÖFFMANN C , UBEZIO B , BÖHM C , et al. Virtual radar: real-time millimeter-wave radar sensor simulation for perception-driven robotics[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 4704- 4711.
doi: 10.1109/LRA.2021.3068916 |
4 |
GU M X , LEE M C , LIU Y S , et al. Design and analysis of frequency hopping-aided FMCW-based integrated radar and communication systems[J]. IEEE Trans.on Communications, 2022, 70 (12): 8416- 8432.
doi: 10.1109/TCOMM.2022.3220333 |
5 | WEI K H , JING B S , XIN Y , et al. Micro-Doppler feature extraction of micro-rotor UAV under the background of low SNR[J]. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1127- 1139. |
6 |
刘利民, 程呈, 韩壮志, 等. 实时机载雷达告警仿真系统设计与实现[J]. 系统工程与电子技术, 2016, 38 (4): 812- 820.
doi: 10.3969/j.issn.1001-506X.2016.04.14 |
LIU L M , CHENG C , HAN Z Z , et al. Design and implementation of real-time simulation system for airborne radar warning[J]. Systems Engineering and Electronics, 2016, 38 (4): 812- 820.
doi: 10.3969/j.issn.1001-506X.2016.04.14 |
|
7 | LU Y Q, HAN Z Z. Simulation of multichannel radar echo processing based on Simulink[C]//Proc. of the International Conference on Wireless Communications, Signal Processing and Networking, 2017: 2060-2064. |
8 | KRAVCHENKO I, VERTEGEL V. An extended simulink model of single-chip automotive FMCW radar[C]//Proc. of the Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, 2019: 368-370. |
9 | 赖志超. 车载毫米波雷达系统仿真及算法设计[D]. 南京: 东南大学, 2022. |
LAI Z C. Syetem simulation and algorithm design of vehicle-mounted millimeter wave radar[D]. Nanjing: Southeast University, 2022. | |
10 |
尹良, 刘红杰, 赵晓峰, 等. 基于雷达方程的AN/TPY-2雷达作用距离与干扰研究[J]. 系统工程与电子技术, 2018, 40 (1): 50- 57.
doi: 10.3969/j.issn.1001-506X.2018.01.08 |
YIN L , LIU H J , ZHAO X F , et al. Research on AN/TPY-2 radar range and jamming based on radar equation[J]. Systems Engineering and Electronics, 2018, 40 (1): 50- 57.
doi: 10.3969/j.issn.1001-506X.2018.01.08 |
|
11 | VASCONCELOS M, NALLABOLU P, LI C Z. Range resolution improvement in FMCW radar through VCO's nonlinearity compensation[C]//Proc. of the IEEE Topical Conference on Wireless Sensors and Sensor Networks, 2023: 53-56. |
12 |
DVRR A , BÖHM D , SCHWARZ D , et al. Coherent measurements of a multistatic MIMO radar network with phase noise optimized non-coherent signal synthesis[J]. IEEE Journal of Microwaves, 2022, 2 (2): 239- 252.
doi: 10.1109/JMW.2022.3154886 |
13 |
XIE Y H , JIANG D , LIU Z C . Improved accuracy of power electronic-based motor emulation with compensation for signal transmission delay[J]. IEEE Trans.on Transportation Electrification, 2022, 8 (1): 886- 897.
doi: 10.1109/TTE.2021.3116660 |
14 | 陈泽盛, 杨承志, 邴雨晨, 等. 基于SystemVue的DRFM干扰仿真研究[J]. 现代雷达, 2021, 3 (9): 99- 104. |
CHEN Z S , YANG C Z , BING Y C , et al. A study on DRFM jamming simulation based on SystemVue[J]. Modern Radar, 2021, 3 (9): 99- 104. | |
15 |
唐玉俊, 张竞文, 蔡萍, 等. 基于信号随机涨落特征的电路噪声优化方法[J]. 系统工程与电子技术, 2023, 45 (4): 950- 957.
doi: 10.12305/j.issn.1001-506X.2023.04.02 |
TANG Y J , ZHANG J W , CAI P , et al. Circuit noise optimization method based on signal random fluctuation characteristics[J]. Systems Engineering and Electronics, 2023, 45 (4): 950- 957.
doi: 10.12305/j.issn.1001-506X.2023.04.02 |
|
16 |
WEI Y , LIANG Z , LI R Y , et al. A general evaluation system for optimal selection performance of radar clutter model[J]. Journal of Systems Engineering and Electronics, 2023, 34 (6): 1520- 1525.
doi: 10.23919/JSEE.2022.000122 |
17 |
许彤, 陈亚洲, 王玉明, 等. 无人机数据链宽带白噪声电磁干扰效应研究[J]. 系统工程与电子技术, 2023, 45 (7): 1965- 1973.
doi: 10.12305/j.issn.1001-506X.2023.07.06 |
XU T , CHEN Y Z , WANG Y M , et al. Research on wideband white noise electromagnetic interference effect of UAV data link[J]. Systems Engineering and Electronics, 2023, 45 (7): 1965- 1973.
doi: 10.12305/j.issn.1001-506X.2023.07.06 |
|
18 |
XU T H , CHEN J B , DU C Y , et al. An inverted complementary cross-coupled VCO to reduce phase noise sensitivity to KVCO[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33 (5): 571- 574.
doi: 10.1109/LMWT.2023.3234292 |
19 | AIL Z , ELSAYED M , TIWARI G , et al. Impact of receiver thermal noise and PLL RMS jitter in radar measurements[J]. IEEE Trans.on Instrumentation and Measurement, 2024, 73, 2002710. |
20 |
MORADI B , LIU X Y , AGHASI H . A 76-82 GHz VCO in 65 nm CMOS with 189. 3 dBc/Hz PN FOM and -0. 6 dBm harmonic power for mm-wave FMCW applications[J]. IEEE Trans.on Circuits and Systems, 2024, 71 (1): 51- 61.
doi: 10.1109/TCSI.2023.3324608 |
21 |
李媚, 魏光辉, 赵宏泽, 等. 导航接收机噪声电磁辐射阻塞效应分析[J]. 系统工程与电子技术, 2022, 44 (10): 3221- 3227.
doi: 10.12305/j.issn.1001-506X.2022.10.27 |
LI M , WEI G H , ZHAO H Z , et al. Analysis of blocking effects of electromagnetic radiation noise on navigation receiver[J]. Systems Engineering and Electronics, 2022, 44 (10): 3221- 3227.
doi: 10.12305/j.issn.1001-506X.2022.10.27 |
|
22 | LORIA E , PRAGER S , SEKER I , et al. Modeling the effects of oscillator phase noise and synchronization on multistatic SAR tomography[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5204212. |
23 | NASTRI R , PADOVANI C , BESTETTI M , et al. Low-motion amplitude operation of lissajous frequency modulated MEMS gyroscopes for spurious harmonics reduction[J]. IEEE Sensors Letters, 2023, 7 (11): 2504104. |
24 |
ZHU L Y , LIU Y S , HE D P , et al. A low-complexity noise reduction algorithm for enhanced target detection in FMCW radar[J]. IEEE Trans.on Vehicular Technology, 2023, 72 (12): 15227- 15236.
doi: 10.1109/TVT.2023.3289817 |
25 |
TANG J K , LIU Z , RAN L , et al. Forward-looking super-resolution imaging based on echo denoising and noise weighting at low SNR[J]. IEEE Sensors Journal, 2023, 23 (3): 3115- 3127.
doi: 10.1109/JSEN.2022.3229126 |
26 |
JARVIS R E , METCALF J G , MCDANIEL J W . Relationship between electromagnetic radiation regulations and signal-to-noise ratio for biomedical radar applications[J]. IEEE Trans.on Radar Systems, 2024, 2, 226- 236.
doi: 10.1109/TRS.2024.3366164 |
27 |
LE H K , NGUYEN H V , HAN S Y , et al. Built-in ring transmission line structure for signal integrity optimization of PAM4 signaling in PCBs[J]. IEEE Trans.on Electromagnetic Compatibility, 2021, 63 (6): 2105- 2114.
doi: 10.1109/TEMC.2021.3078438 |
28 |
LI Y , YU H Y , LI E . Signal integrity analysis of neuronal spike signal in 3-D packaging[J]. IEEE Trans.on Signal and Power Integrity, 2023, 2, 84- 93.
doi: 10.1109/TSIPI.2023.3275124 |
29 |
ZHANG H H , XUE Z S , LIU X Y , et al. Optimization of high-speed channel for signal integrity with deep genetic algorithm[J]. IEEE Trans.on Electromagnetic Compatibility, 2022, 64 (4): 1270- 1274.
doi: 10.1109/TEMC.2022.3161298 |
30 | JEGADEESH R B, RAMASHASTRY V, RAMPRASAD B, et al. IC package with the system board Interconnects-simulation showing PDN noise due to simultaneous switching IOs and its effect on Signal Integrity[C]//Proc. of the IEEE Electrical Design of Advanced Packaging and Systems, 2022. |
31 |
LIU J X , DING J J , WANG C , et al. 8192QAM signal transmission by an IM/DD system at W-band using delta-sigma modulation[J]. IEEE Photonics Technology Letters, 2023, 35 (4): 207- 210.
doi: 10.1109/LPT.2023.3234060 |
32 |
CHOI J , KIM Y . Low loss hybrid-plane PCB structure for improving signal quality in high-speed signal transmission[J]. IEEE Access, 2024, 12, 6413- 6422.
doi: 10.1109/ACCESS.2024.3351940 |
33 |
KIM T K , YOOK J G , KIM J Y , et al. Signal integrity analysis of RF probe card for WLCSP testing using polyimide-based grounded coplanar waveguide transmission lines[J]. IEEE Access, 2023, 11, 79929- 79940.
doi: 10.1109/ACCESS.2023.3299265 |
[1] | 张明龙, 吴雨林, 魏文强, 沈园杰, 郭世盛, 崔国龙. 基于稀疏矩阵填充的级联毫米波雷达高分辨测角方法[J]. 系统工程与电子技术, 2024, 46(8): 2629-2640. |
[2] | 张冬, 邢福逸, 徐允鹤, 钱鹏. 基于双模式切换的机载惯性/雷达组合导航方法[J]. 系统工程与电子技术, 2024, 46(8): 2770-2778. |
[3] | 张春杰, 王冠博, 陈奇, 邓志安. 基于纯自注意力机制的毫米波雷达手势识别[J]. 系统工程与电子技术, 2024, 46(3): 859-867. |
[4] | 蔡嘉怡, 初萍, 庄伦涛, 阳召成. 基于空间属性特征的毫米波雷达身体干扰识别[J]. 系统工程与电子技术, 2024, 46(10): 3365-3374. |
[5] | 郑晶月, 吴佩仑, 陈家辉, 郭世盛, 崔国龙. 车载毫米波雷达多径假目标分析与消除方法[J]. 系统工程与电子技术, 2024, 46(1): 88-96. |
[6] | 万阳良, 梁兴东, 李焱磊. 方位频域滤波的机场毫米波雷达干扰抑制方法[J]. 系统工程与电子技术, 2022, 44(11): 3357-3363. |
[7] | 谭晓衡, 周帅, 黄振林. 基于小波包的24 GHz LFMCW雷达测距方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(3): 522-526. |
[8] | 孙慧霞,刘峥. 毫米波调频步进雷达复合测速方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(3): 539-543. |
[9] | 张显国, 符燕. 伪随机编码调相8mm连续波雷达[J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1105-1107. |
[10] | 吴礼, 彭树生, 肖泽龙, 是湘全. 基于毫米波LFMCW雷达散射计的地杂波测量方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2350-2354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||